УДК 541.128,13

ФИЗИЧЕСКАЯ ХИМИЯ

О. Н. КИМХАЙ, Б. Н. КУЗНЕЦОВ, Ю. И. ЕРМАКОВ, академик Г. К. БОРЕСКОВ

ОКИСЛЕНИЕ ВОДОРОДА НА НАНЕСЕННЫХ МОЛИБДЕНОВЫХ КАТАЛИЗАТОРАХ, ПРИГОТОВЛЕННЫХ ВЗАИМОДЕЙСТВИЕМ ТЕТРАКИС-л-АЛЛИЛМОЛИБДЕНА С СИЛИКАГЕЛЕМ

Применение металлоорганических соединений переходных металлов (в частности л-аллильных комплексов) является удобным методом получения нанесенных катализаторов, содержащих изолированные ионы на поверхности носителей (1-3). При использовании для приготовления молибденовых катализаторов тетракис-л-аллилмолибдена взаимодействие его с спликагелем протекает в основном по схеме (4):

$$Si-OH + Mo(C_3H_5)_4 \rightarrow Si-O + MO + MO + Si-OH$$

$$Si-OH - Si-OH - Si-O + C_3H_5$$

$$(1)$$

При окислении поверхностного комплекса (1) образуются поверхностные соединения шестивалентного молибдена, имеющие состав:

$$S_{i-0} \longrightarrow S_{i-0} \longrightarrow S_{i$$

В данной работе приводятся результаты измерения каталитической активности нанесенных молибденовых катализаторов, полученных с применением тетракис-л-аллилмолибдена, в реакции окисления водорода.

Для приготовления катализаторов силикагель (поверхность $250 \text{ м}^2/\text{г}$, температура дегидратации 400° С) обрабатывался раствором $\text{Мо}(\pi\text{-C}_3\text{H}_5)_4$ в пентане в условиях, исключающих контакт с воздухом. Полученный катализатор, содержащий поверхностные комплексы (1), окислялся в токе кислорода при температуре $\geqslant 300^{\circ}$. Предварительными опытами было установлено, что изменение температуры окисления образдов кислородом в интервале $300-450^{\circ}$ не влияло на их каталитическую активность. Содержание молибдена в катализаторах варьировалось от 0.4 до 5 вес. %.

Для сопоставления испытывалась также каталитическая активность образцов, приготовленных традиционными методами — пропиткой силикагеля молибдатом аммония (ниже эти катализаторы называются стандартными). После сушки стандартные образцы прокаливались в токе кислорода при 500°.

Каталитическая активность в реакции окисления водорода измерялась в проточно-циркуляционной установке в избытке кислорода при общем давлении смеси $\rm H_2+O_2$ равном атмосферному. Содержание водорода в смеси варьировалось от 0,1 до 3,3 об.%. Путем варьирования размера частиц катализатора было показано, что на зернах размером 0,25—0,5 мм реакция протекает в кинетической области в интервале температур $100-450^\circ$. Кинетические измерения проводились на образцах, активность которых доводилась до стационарной. По данным скорости реакции рассчитывалась атомная каталитическая активность (а.к.а.), т.е активность, отнесенная

к 1 иону молибдена в катализаторе. В табл. 1 приведены данные об а.к.а. катализаторов, приготовленных взаимодействием $Mo(C_3H_5)_4$ с SiO_2 , изме-

ренные при различных температурах.

Катализаторы, приготовленные через Mo (π-C₃H₅)₄, активны в окислении водорода уже при 100°. Порядок реакции по водороду на исследованных образцах был близок к двум в интервале температур 100—300°. Повы-

Таблица 1 Данные по активности молибденовых катализаторов, приготовленных взаимодействием $Mo(C_3H_5)_4$ с SiO_2 , в реакции окисления водорода (стационарная концентрация водорода 1 об.%)

Содержа- ние Мо в катали- заторе, вес.%	т-ра реакции, °С	А.к.а.·10 ³ , молек О ₂ / /ион Мо·сек	Порядок реакции по водо- роду	Содержа- ние Мо в катали- заторе, вес.%	Т-ра реакции, °С	А.к.а.·10³, молек О ₂ / /ион Мо·сек	Порядок реакции по водо- роду
0,4	200 250 300 350 400 100 125 150 175 200	1,1 1,74 4,57 10 21,9 0,3 0,83 1,2 1,41 1,9	1,9	5,0	250 300 350 400 450 200 300 350 400	2,34 2,88 5,5 12,9 32,4 2,5 2,57 4,46 18,6	1,9 1,8 1,6 1,3 2,0 2,0

шение температуры реакции до 350-450° приводило к некоторому спиже-

нию порядка реакции.

Температурная зависимость скорости реакции окисления водорода приведена на рис. 1. В области температур 100—300° энергия активации реакции для образдов, содержащих 0,4 и 1% Мо, была близка и составляла 4—5 ккал/моль; в области высоких температур энергия активации составляла ~12 ккал/моль для образда, содержащего 0,4 вес.% Мо, и 18 ккал/моль для образда, содержащего 1 вес.% Мо.

В пределах воспроизводимости эксперимента величину а.к.а. можно считать независимой от содержания молибдена в катализаторе (см. табл. 1).

Стандартный молибденовый катализатор, так же как и массивная окись молибдена, обладал измеримой каталитической активностью лишь при 450° и выше. А.к.а. стандартных образцов была на несколько порядковниже а.к.а. катализаторов, полученных с применением $\text{Mo}\left(\text{C}_{3}\text{H}_{5}\right)_{4}$. Из приведенных на рис. 2 данных следует, что а.к.а. катализатора, приготовленного взаимодействием $\text{Mo}\left(\pi\text{-C}_{3}\text{H}_{5}\right)_{4}$ с SiO_{2} , при температуре реакции 100° может быть выше, чем а.к.а. стандартного молибденового катализатора при 500° . Порядок реакции по водороду в случае стандартного молибденового катализатора близок к единице при $450\text{--}500^{\circ}$.

Полученные данные показывают, что каталитические свойства образцов, содержащих поверхностные комплексы шестивалентного молибдена (см. (²)), резко отличаются от свойств стандартных катализаторов, содержащих микрофазу окиси молибдена. Различие в активности образдов и различие кинетических параметров реакции может указывать на различие в механизме окисления водорода на этих катализаторах. На стандартных катализаторах реакция протекает по стадийному (окислительно-восстановительному) механизму, так как при $450-500^\circ$ кислород катализатора становится достаточно подвижным. Высокая активность катализаторов, полученных через $MO(C_3H_5)_4$, связана, вероятно, с протеканием реакции по

-«ассоциативному» (нестадийному) механизму в координационной сфере иона молибдена.

Наличие порядка реакции по водороду, близкого к двум, может указывать на участие в лимитирующем акте реакции молекулярной формы кислорода. Снижение порядка реакции по водороду, которое наблюдается в области высоких температур, и повышение энергии активации реакции может свидетельствовать о постепенном переходе от ассоциативного к

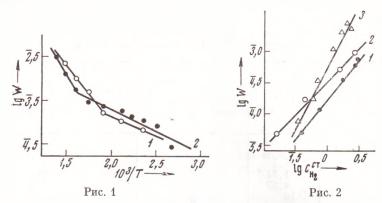


Рис. 1. Аррениусовская зависимость скорости реакции окисления водорода на катализаторах, приготовленных взаимодействием $\mathrm{Mo}\left(\mathrm{C_3H_5}\right)_4$ с $\mathrm{SiO_2}.$ 1-0.4 вес.% $\mathrm{Mo};$ 2-1 вес.% Mo

Рис. 2. Зависимость скорости реакции окисления водорода (молек. O_2 /ион Мо·сек) от стационарной концентрации водорода ($\lg C_{u_2}^{\rm ct}$). 1-5,3 вес.% Мо стандартный катализатор, температура реакции $450^\circ;\ 2$ — то же, $500^\circ,\ 3-1$ вес.% Мо, получен через Мо $(C_3H_5)_4$, 100°

«окислительно-восстановительному механизму реакции с ростом температуры вследствие повышения подвижности кислорода катализатора. Снижение порядка реакции по водороду может быть также и следствием того, что с повышением температуры возрастает доля диссоциативно адсорбированного кислорода, участвующего в реакции окисления водорода наряду с молекулярно адсорбированным кислородом.

Институт катализа Сибирского отделения Академии наук СССР Новосибирск Поступило 15 VIII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. И. Ермаков, А. М. Лазуткин и др., Кинетика и катализ, 13, 1422 (1972). ² Ю. И. Ермаков, Б. Н. Кузнецов, ДАН, 207, № 3, 644 (1972). ³ Ю. И. Ермаков, Б. Н. Кузнецов, В. Л. Кузнецов, Кинетика и катализ, 14, № 4 (1973). ⁴ Ю. И. Ермаков, Б. Н. Кузнецов, Доклад, представленный на 2-й «Советско-Японский семинар по катализу, октябрь, 1973.