УДК 577.15.024

БИОХИМИЯ

Л. Л. КИСЕЛЕВ, Л. Л. КОЧКИНА

МЕХАНИЗМ АКТИВАЦИИ АМИНОКИСЛОТ ПРИ БИОСИНТЕЗЕ БЕЛКОВ

МАКРОЭРГИЧЕСКОЕ СОЕДИНЕНИЕ АДЕНОЗИНМОНОФОСФАТА С АМИНОАЦИЛ-тРНК-СИНТЕТАЗОЙ

(Представлено академиком А. А. Баевым 13 IX 1973)

Карбоксильная активация аминокислот при биосинтезе белков, как было установлено $(^1,^2)$, происходит за счет энергии гидролиза макроэргической связи $AT\Phi$ и катализируется ферментами аминоацил-тРНК-синтетазами (КФ 6.1.1). В отсутствие тРНК продуктами реакции являются аминоациладенилат и пирофосфат, в присутствии тРНК — аминоацил-тРНК, $AM\Phi$ и пирофосфат. Рассматривая химические свойства компонентов этих и других модельных реакций, пришли $(^3)$ к гипотезе, согласно которой синтезу аминоациладенилата должен предшествовать гидролиз $AT\Phi$ в активном центре фермента с образованием промежуточного продукта — аденозинмонофосфата, ковалентно соединенного макроэргической связью с функциональной группой белковой молекулы фермента, и пирофосфата:

 $E + AT\Phi \rightarrow E \sim AM\Phi + \Pi\Phi,$ (1)

где E-аминоацил-тРНК-синтетаза и $\Pi\Phi-$ пирофосфат. Цель этой работы состояла в экспериментальной проверке возможности обнаружения соепинения $E\sim\!AM\Phi$.

Опыты проводили с триптофанил-тРНК-синтетазой (ТРСаза) из поджелудочной железы быка, выделенной в форме электрофоретически гомогенного белка с молекулярным весом 120 000 (4). Использовали [С¹⁴]АТФ с удельной активностью 50 С/моль фирмы «Amersham» и [С¹⁴]АМФ с удельной активностью 250 С/моль (Чехословакия). Для анализа использовали электрофорез на бумаге FN-11 в 0,03 М цитратном буфере, рН 4,0, 16 в/см, разделение 2,5 часа в присутствии свидетелей: АМФ, АДФ, АТФ, триптофаниладенилата, которые хорошо делятся в этих условиях. Радиоактивность определяли после разрезания электрофореграммы на полоски шириной по 5 мм и просчета их в толуольном сцинтилляторе на автоматическом спектрометре «Интертекник» СЛ-30.

Концентрация компонентов при инкубации ТРСазы с АТФ (M): ТРСаза $7 \cdot 10^{-6}$, АТФ $7 \cdot 10^{-5}$, трис-HCl, pH 7.5, 0.05, MgCl₂ $0.3 \cdot 10^{-3}$. Конечный объем 0.2 мл, инкубация 20 час при 37° . Реакцию останавливали добавлением равного объема 10% трихлоруксусной кислоты (ТХУ). Гель-фильтрацию вели на колонке с сефадексом G-50 (тонкий), 1×20 см, элюцию проводили 0.02 M трис-HCl, pH 7.5, $\div 10^{-3}$ M дитиотреитолом, пробы перед разделением обрабатывали ТХУ. Ниже показан состав продуктов, образующихся после инкубации фермента с $[C^{14}]$ АТФ $(10^4$ имп/мин).

•				
Условия инкубации	Исходное содержа- ние АТФ	АТФ	АМФ	Трипто- фанил- аденилат
Исходная АТФ После инкубаци и без	9,9 9,9	9,4 9,3	$0.5 \\ 0.6$	0
фермента После инкубации с фер- ментом	9,9	6.9	2,5	0,3

Из равенства взятой в опыт и обнаруженной электрофоретическим анализом радиоактивности следует, что после осаждения белка ТХУ в надосадочную жидкость переходят все радиоактивные продукты и, следовательно, использованный способ позволяет полностью выявить взаимопревращения нуклеотидов. Видно, что четвертая часть внесенной АТФ превращается в АМФ, АДФ практически не образуется, так как сумма полученной радиоактивности АТФ+АМФ+триптофаниладенилат соответствует внесенной. Кроме того, в опытах, где АДФ брали в качестве свидетеля, радиоактивность в опытных пробах на уровне пятна АДФ не обнаруживали. Наблюдается незначительное образование триптофаниладенилата, составляющее всего несколько процентов от внесенной АТФ, по-видимому, за счет возможной примеси эндогенного триптофана в препарате фермента. Опнако, поскольку аденилат тринтофана достаточно лабилен (время его полужизни равно 6 час. при 0° ($^{\circ}$)), даже незначительного образования и последующего распада аденилата до АМФ и свободной аминокислоты может быть в принципе достаточно для того, чтобы объяснить накопление АМФ при длительной инкубации фермента с АТФ.

Чтобы различить, является ли обнаруженная АМФ свободной или связанной с белком, были выполнены опыты с гель-фильтрацией фермента после его инкубации с АТФ. Если образование АМФ является следствием гидролиза аденилата до свободных АМФ и триптофана, то следует ожидать отделения АМФ от белковой фракции. Действительно, когда в модельном опыте ТРСаза была смешана с [С14]АМФ и подвергнута гельфильтрации, менее 0.02% радиоактивности обнаружилось в белковой фракции. Если же свободная АМФ обнаруживается при электрофорезе в кислоторастворимой фракции вследствие предшествующего гидролиза Е~АМФ под действием ТХУ, то после гель-фильтрации в нейтральной среде АМФ должна остаться вместе с белковой фракцией. Измерения показали, что действительно в белковой фракции обнаруживается [С¹⁵]АМФ, причем АТФ в комплексе с ферментом отсутствует или обнаруживается в крайне незначительном количестве. Данные электрофоретического анализа радиоактивных продуктов, связанных с ТРСазой после гель-фильтрации инкубпрованного Е~АТФ-комплекса, следующие (10³ имп/мин):

АТФ	АМФ	Триптофанил- аденилат
0	3	0.6
0.5	5 4,5	0,7
0.6	2.5	1,0

Для доказательства макроэргического характера связи $E\sim AM\Phi$ выделенную гель-фильтрацией белковую фракцию, инкубированную с $AT\Phi$, подвергли обработке пирофосфатом с тем, чтобы провести реакцию (см. уравнение (1)) в обратном направлении, т. е. получить $AT\Phi$ из $E\sim AM\Phi$ и пирофосфата. В этих опытах концентрация TPСазы составляла $2\cdot 10^{-6}\ M$, $MgCl_2\ 1,5\cdot 10^{-3}\ M$, а $\Pi\Phi-2,5\cdot 10^{-4}\ M$. Пробы инкубировали $10\$ мин. при 37° п перед электрофорезом обрабатывали TXY (табл. 1).

В опыте 1 образуется вдвое больше $AT\Phi$, чем исходно содержалось в сумме $AT\Phi$ +триптофаниладенилат, содержание $AM\Phi$ при этом резко падает. В опытах 2 и 3 появляется $AT\Phi$, которой не было после гель-фильтрации, а содержание $AM\Phi$ уменьшается в 2-4 раза.

Макроэргическая природа соединения ТРСазы с АМФ хорошо иллюстрируется расчетом числа макроэргических связей до и после реакции с ПФ (среднее из 3 опытов по пирофосфоролизу в усл. ед.):

Соединения	Количество макроэргиче- ских связей		
$\begin{array}{l} \text{AT}\Phi + \text{E} \cdot (\text{Тр}\Pi \sim \text{AM}\Phi) \\ \text{AT}\Phi + \text{E} \cdot (\text{Тр}\Pi \sim \text{AM}\Phi) + \text{E} \sim \text{AM}\Phi \end{array}$	1,9 6,0	4.3 5.6	

Если считать, что Е~АМФ содержит макроэргическую связь, то незначительное уменьшение общего количества макроэргов после инкубации легко объяснить гидролизом. Если же не учитывать Е~АМФ в качестве макроэргического соединения, то значительное увеличение общего количества макроэргов в системе становится совершенно необъяснимым.

Таблица 1 Электрофоретический анализ радиоактивных продуктов пирофосфоролиза $E \sim AM\Phi$ -комплекса, (10^3 имп/мин)

Nº	После гель-фильтрации			После обработки пирофосфатом		
опыта	АТФ	АМФ	аденилат	ΑΤΦ	ΑМФ	аденилат
1 2 3	1,0 0 0	4,2 4,4 3,6	0,7 2,6 1,5	3,2 3,2 1,7	1,1 1,0 1,8	0.7 2.6 1,5

При добавлении пирофосфата к $E\sim AM\Phi$, содержащему триптофаниладенилат, уровень аденилатов не меняется, как видно из приведенных данных. Это может объясняться либо кинетическими особенностями системы (равновесие нескольких реакций), либо отсутствием пирофосфоролиза аденилатов в данных условиях. Так как при любом из этих объяснений интерпретация опыта в отношении природы $E\sim AM\Phi$ не меняется, мы в данной работе не выясняли причин наблюдающегося сохранения уровня аденилатов в присутствии $\Pi\Phi$.

Таким образом, накопление АТФ в опытах с пирофосфоролизом Е~ АМФ доказывает, что АМФ связана с ферментом макроэргической связью. В контрольных опытах, здесь не приведенных, было показано, что после инкубации смеси ТРСазы, АМФ и ПФ с триптофаном или без него, как и следовало ожидать, АТФ не образуется.

Авторы благодарны А. А. Краевскому за ценные советы.

Институт молекулярной биологии Академии наук СССР Москва Поступило 5 IX 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ M. Hoagland, Biochim. et biophys. acta, 16, 288 (1955). ² P. Berg, J. Biol. Chem., 222, 1025 (1956). ³ A. A. Краевский, Л. Л. Киселев, В. П. Готтих, Молекулярная биология, 7, № 5, 796 (1973). ⁴ O. O. Фаворова. Л. Л. Кочкина и др., Молекулярная биология, 8, № 4 (1974). ⁵ A. V. Parin, E. P. Saveliev et al., Studia Biophysica, 24/25, 391 (1970).