УДК 541.623:547.442:539.143.43

ХИМИЯ

В. А. ГИНДИН, Б. А. ЕРШОВ, А. И. КОЛЬЦОВ, Р. С. НОЙ

ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРАНС-ЕНОЛИЗАЦИИ АЦИКЛИЧЕСКИХ В-КЕТОАЛЬДЕГИДОВ

(Представлено академиком Б. П. Никольским 24 IV 1973)

Неоднократные сообщения о присутствии устойчивых транс-енольных форм ациклических * 1,3-дикарбонильных соединений в значительных количествах ($^{1-3}$) позднее опровергались ($^{4-7}$, 8). Транс-енольную форму в равновесных условиях наблюдали только в серии формилацетатов ** с электроотридательными заместителями в положении 2 (10-11). Термолинамические параметры транс-енолизации не изучались, но было высказано предположение о стабилизации транс-енольной формы за счет энтропийного выигрыша (11).

Нами проведено исследование таутомерного равновесия между альдо-(А), цис- (Б) и транс-енольной (В) формами ряда алифатических и жирноароматических β-кетоальдегидов (Î-III) и альдоэфира (табл. 1) с помощью спектроскопии п.м.р.

В основных растворителях, таких как ацетон, диметилацетамид (ДМАА), диметилформамид (ДМФА) и др., большинство изученных соединений существует в виде равновесной смеси таутомеров (А), (Б) и (В), из которых транс-енольная форма (В) нередко оказывается доминирующей (табл. 1). В инертных растворителях (ССІ₄, толуол) транс-енольная форма обнаружена только для альдоэфира (IV) ***.

Характер спектров транс-енольной формы (табл. 2) (относительно сильное экранирование формильных протонов и большие значения констант спин-спинового взаимодействия (к.с.с.в.) последних с енольными и олефиновыми протонами) однозначно указывает на енолизацию по формильной

группе, ведущую к оксиметиленкетонной структуре (В) ****.

Из температурных зависимостей констант альдо-цис-транс-енольного равновесия определены его термодинамические параметры (табл. 1). В противоположность точке зрения, высказанной в работе (10), переход от цис-енола (Б) к транс-енолу (В) сопровождается значительным понижением энтропии, причем для всех соединений в любых растворителях величины $\bar{S}_{\rm B} - \bar{S}_{\rm B}$ близки к 10 э.е. Полученный результат можно объяснить существенным ограпичением трансляционной свободы молекул транс-еноль-

**** Цис-енолизация формилбензоилметанов (I) изучена нами ранее (12).

^{*} Енолизация транс-фиксированных шестичленных циклических 1,3-дикетонов,

а также 3-формилкамфоры хорошо изучена (8).

** Данные п.м.р., свидетельствующие о наличии транс-енольного таутомера, получены также для водных растворов малондиальдегида и формилацетона (9).

^{***} Содержание транс-енольной формы в этом случае сильно зависит от концентрации вещества и наличия полярных примесей.

ной формы в результате их связывания с молекулами растворителя* водородными мостиками типа =CH-OH \dots O=C. Образование таких межмолекулярных водородных связей (м.м.в.с.) является, по-видимому, необходимым условием устойчивости транс-енольных форм. В противном случае переход (Б) \rightarrow (В), сопровождающийся раскрытием хелатного цикла

Таблица 1
Таутомерный состав и термодинамические характеристики цис-транс-енолизации β-кетоальдегидов

	Раствори-	Содержа- ние форм, % при 26°		орм,		$\overline{H}_{\mathrm{B}} - \overline{H}_{\mathrm{B}}$,	$\overline{s}_{\mathrm{B}}$	δ _e *	_Ј в. •ф
Соединение	тель	A	Б	В	1	ккал/моль	-\$\overline{S}_B, 3. e.	e	еф
(I) n-XC ₈ H ₄ COCH ₂ CHO X=N(CH ₃) ₂ X=OCH ₃ X=CH ₃ X=CH ₃ X=H X=Br X=NO ₂ (II) RCOCH ₂ CHO R=TPETC ₄ H ₉ R=U30-C ₄ H ₉ R=CH ₃ (III) RCOCH(CH ₃)CHO R=U30-C ₃ H ₇ R=C ₂ H ₈ R=CH ₃ (III) RCOCH(CH ₃)CHO	ДМФА ДМФА ДМФА ДМФА ДМФА ДМФА АЦЕТОН ДМФА АПЕТОН ДМАА	111 166 133 9 17 10 20 17 11 11 11 333 33 12	100 82 79 78 63 58 89 68 77 75 40 40 	18 21 23 377 42 42 68 44 8 50 36 100 26 100 36 41 100 67 44 85	-0,91 -0,80 -0,66 -0,32 -0,19 -0,86 -1,33 -0,04 -1,30 0,10 -0,12 -0,46 -0,23 -0,29 -0,40 2,00	2.3+0.1 2.0+0.5 2.5+0.2 2.6+0.2 2.6+0.2 2.7+0.1 2.4+0.1 1.0+0.1 3.3+0.1 1.0+0.1 3.6+0.3 2.9+0.3 2.2+0.1 2.6+0.3 1.0+0.1 3.8+0.3 5.3+0.3 5.3+0.3	111 9 110 100 111 111 112 100 9 9	16,27 15,89 15,85 15,81 15,63 15,60 15,08 14,85 14,80 14,94 14,51 14,71	8,5 8,5 8,2 8,0 7,7 7,0 8,9 8,0 8,0 9,3

^{*} Величины $\delta_{
m e}^{
m B}$ и $J_{
m eff}^{
m B}$ — для растворов в ацетоне при температуре —70°.

и появлением новых конформационных степеней свободы, должен был

привести к повышению энтропии.

Проигрыш в энтропии при переходе (Б) → (В) компенсируется выигрышем в энтальнии. Для всех изученных соединений содержание трансенольной формы растет при понижении температуры, а разность $\overline{H}_{\mathtt{B}} - \overline{H}_{\mathtt{B}}$ положительна и превышает 2 ккал/моль. В отличие от разности $\overline{S}_{\text{B}} - \overline{S}_{\text{B}}$ величина $\overline{H}_{\rm B} - \overline{H}_{\rm B}$ существенно зависит от строения таутомерного соединения. Структурные факторы, ослабляющие в.м.в.с., способствуют увеличению разности $\overline{H}_{\mathtt{B}} - \overline{H}_{\mathtt{B}}$ и доли транс-енольной формы. Например, для растворов в ДМФА величина $\overline{H}_{\rm B} - \overline{H}_{\rm B}$ меняется от 2,4 ккал/моль для (II) (R=C(CH₃)₃) - соединения с прочной в.м.в.с., до 5,3 ккал/моль для (IV), где в.м.в.с. наименее прочна. Наблюдается грубая корреляция между склонностью соединения к транс-енолизации и величиной химического сдвига пис-енольных протонов (δ_e^B) , которая в ряду родственных соединений может служить критерием прочности в.м.в.с. (13). Более того, внутри каждой группы кетоальдегидов понижению доли транс-енола соответствует рост к.с.с.в. между формильным и цис-енольным протонами $(J_{e\phi}{}^{\rm E})$ (табл. 1), т. е. смещение внутрихелатного равновесия в сторону более устойчивого таутомера с енолизованной формильной группой (12).

^{*} В инертных растворителях возможна м.м.в.с. между молекулами таутомерного соединения.

Природа растворителя сильно влияет на положение цис-транс-енольного равновесия, изменяя величины $\overline{H}_{\mathrm{B}} - \overline{H}_{\mathrm{B}}$. С ростом основности растворителя (14) равновесие смещается в сторону транс-енольной формы. В случае альдоэфира (IV) разность энтальпий $\overline{H}_{\rm B}$ — $\overline{H}_{\rm B}$ возрастает приблизительно на 2 ккал/моль при переходе от ацетона к ДМАА. В то же время полярность среды не оказывает значительного влияния на положение равновесия (Б) ≠ (В), как это видно на примере формил-п-нитробензоилметана (I, X=NO₂) (табл. 3). Отсюда следует, что из всех видов взаимодействий таутомерного соединения с растворителем определяющим (с точки зрения стабилизации транс-енольной формы) является м.м.в.с., прочность которой

Таблипа 2 Интервалы значений основных параметров * п.м.р. цис- (Б) и транс-енольных (В) форм β -кетоальдегидов (І—III) и альдоэфира (IV), растворенных в ацетоне

_		δφ, λ	т.д.	δе, м.д.		
Соединение	T, °C	Б	В	Б	В	
(I) n-XC ₆ H ₄ COCH ₂ CHO ** (II) RCOCH ₂ CHO (III) RCOCH (CH ₃) CHO (IV) CH ₃ OCOCH (CH ₃) CHO	$ \begin{array}{c} -50 \\ -80 \\ 26 \div (-50) \\ 26 \div (-50) \end{array} $			15,5—16,3 14,8—15,1 14,5—15,0 11,3—11,4	12,2—13,7 11,0—12,2 9,1—11,4 7,5—10,0	

(продолжение)

_		Ј оф	Јеф, гц		
Соединение	T, °C	Б	В	Б	В
(I) n-XC ₅ H ₄ COCH ₂ CHO ** (II) RCOCH ₂ CHO (III) RCOCH(CH ₃) CHO (IV) CH ₃ OCOCH(CH ₃) CHO	$ \begin{array}{c c}50 \\80 \\ 26 \div (50) \\ 26 \div (50) \end{array} $	4,5—5,0 4,3—4,7 0,9—1,2 ***	11.0—12.3 12 0.9—1.2 ***	7.0—8,5 8.0—9,0 8,0—10,2 13.0	8,0 9,0 6,0 6,2

^{*} Химические сдвиги формильных $(\delta_{\check{\mathbf{0}}})$ и енольных протонов $(\delta_{\mathbf{e}})$; констан**ты спин-спи**нового взаимодействия формильных протонов с олефиновыми (J_{ob}) и енольными (J_{eb}) протонами. ** Растворы в ДМФА. *** Между формильным и метильными протонами.

Таблица 3 Содержание транс-енольной формы (B) формил-n-нитробензоилметана I $(X = NO_2)$ в различных растворителях при 30° С

Растворитель	DN _{SbCl₅} *	ε	В,	Растворитель	$DN_{\mathrm{SbCl_{5}}}^{*}$	8	B, %
Пиридин ДМСО ДМФА Ацетон	33,1 29,8 26,6 17,0	12,3 45 36,1 20,7	75 73 42 0	Пропандиол-1,2-карбо- нат Ацетонитрил	15,1	69 38	0

^{*} Донорные числа, характеризующие относительную основность растворителя (14).

возрастает с ростом основности растворителя. Таким образом, в первом приближении положение цис-транс-енольного равновесия определяется конкуренцией между внутри- и межмолекулярными водородными связями. В соответствии с правилом Кабачника (15) доминирующая транс-енольная форма должна быть менее «кислой», чем цис-енольная. В таких случаях можно предполагать большую прочность м.м.в.с. между транс-енольным таутомером и основным растворителем по сравнению с в.м.в.с. в цис-енольном таутомере.

Полученные результаты позволили уточнить необходимые условия устойчивости транс-енольных форм ациклических 1,3-дикарбонильных соеди-

нений (¹⁶, ¹⁰, ¹¹).

Спектры п.м.р. сняты на спектрометрах «Варпан НА-100Д-15» и «ДЖЕОЛ С-60HL». Химические сдвиги измерены относительно внутреннего эталона — ГМДС. Таутомерный состав определен путем электронного интегрирования сигналов, если таутомерные формы были долгоживущими и давали отдельные спектры (при низких температурах). При более высоких температурах, когда сигналы цис- и транс-енольной форм сливаются, константа цис-транс-енольного равновесия определялась по величине наблюдаемой к.с.с.в. между формильным и олефиновым протонами по формуле (8):

 $K = (J_{\circ \phi}{}^{\mathrm{B}} - J_{\circ \phi}) / (J_{\circ \phi} - J_{\circ \phi}{}^{\mathrm{E}}),$

где $J_{o\phi}^{\ B}$ и $J_{o\phi}^{\ B}$ — к.с.с.в. цис- и транс-форм, измеренные при низких температурах (табл. 2). Абсолютная погрешность определения таутомерного состава составляет 0,5—3,0%. В основных растворителях положение равновесия не зависит от концентрации в интервале 3—10 мол.%. Измерения таутомерного состава проведены в интервалах температур (°C) $60 \div -20$ (ДМАА п CCl₄), $75 \div -55$ (ДМФА) п $60 \div -80$ (анетон).

Ленинградский государственный университет им. А. А. Жданова

Поступило 24 IV 1973

Институт высокомолекулярных соединений Академии наук СССР Ленинград

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. І. Кавасhnik, S. Т. Yoffe, K. V. Vatsuro, Tetrahedron, 1, 317 (1957).

² А. А. Воthner-by, R. К. Harris, J. Org. Chem., 30, 254 (1965).

³ Т. Shono et al., J. Chem. Soc. Japan, Pure Chem. Sect., 88, 1068 (1967).

⁴ S. J. Roads, R. W. Hasbrouck et al., Tetrahedron Letters, 1963, 669.

⁵ S. T. Yoffe, E. I. Fedin et al., ibid., 1966, 2661.

⁶ H. H. Шапетько, А. В. Кесенних и др., Теоретич. и экси. хим., 2, 757 (1966).

⁷ С. Т. Иоффе, К. В. Вацуро, М. И. Кабачник, Изв. АН СССР, сер. хим., 1968, 2024.

⁸ А. И. Кольцов, Г. М. Хейфец, Уси. хим., 40, 1661 (1971).

⁹ W. О. George, V. G. Mansell, J. Chem. Soc., B, 1968, 132.

¹⁰ С. Т. Иоффе, К. В. Вацуро и др., Изв. АН СССР, сер. хим., 1971, 731.

¹¹ S. T. Yoffe, P. V. Petrovskii et al., Tetrahedron, 28, 2873 (1972).

¹² V. А. Gindin, I. А. Сhripun et al., Org. Мадр. Resonance, 4, 63 (1972).

¹³ Дж. Эмсли, Дж. Финей, Л. Сатклиф, Спектроскопия ЯМР высокого разрешения, 1968, 1, стр. 506.

¹⁴ В. Гутман, Химия координационных соединений в неводных растворах, 1971, стр. 30.

¹⁵ М. И. Кабачник, Жури. Всесоюзн. хим. общ. им. Д. И. Менделеева, 7, 263 (1962).

¹⁶ Р. С. Ной, Б. А. Ершов, А. И. Кольцов, Журн. орг. хим., 9, 426 (1973).