УДК 513.88:513.83

MATEMATHKA

В. И. ДМИТРИЕВ

ДВОЙСТВЕННОСТЬ ИНТЕРПОЛЯЦИОННЫХ МЕТОДОВ КОНСТАНТ И СРЕДНИХ

(Представлено академиком Л. В. Канторовичем 21 V 1973)

В (4, 2) были определены K- и J-методы построения интерполяционных промежуточных пространств. В настоящей работе доказывается, что эти

методы являются двойственными друг к другу.

Основные результаты работы: теорема 1 о сопряженном к банаховой решетке функций со значениями в банаховом пространстве и теоремы 2, 3, описывающие при естественных предположениях сопряженные к пространствам K- и J-методы и содержащие в себе, в частности, теорему \mathcal{H} . Л. Лионса и \mathcal{H} . Петре о двойственности для метода средних (4).

Н. Ароншайн и Е. Гальярдо первыми установили, что если B_0 , B_4 — банахова (интерполяционная) пара, $B_0 \cap B_1 \neq \{0\}$ плотно в B_0 и в B_4 , то $(B_0 + B_1)^* = B_0^* \cap B_1^*$, $(B_0 \cap B_1)^* = B_0^* + B_1^*$, где звездочка означает «топологически сопряженное», а равенство— изометрический изоморфизм (1).

Пусть R — множество $\{1, 2, 3, \ldots\}$, μ — мера на R, $\mu_n = \mu(\{n\})$, $0 < \mu_n < \infty$, $n = 1, 2, \ldots$ Вещественная функциональная банахова решетка (ф.б.р.) E на (R, μ) называется правильной, если E содержит положительную всюду (последовательность) функцию (в силу чего ассоциированное с E пространство E' линейно и изометрично вложено в E') и E' совпадает с E^* (3).

Для ф.б.р. E и банахова пространства A через E(A) обозначается совокупность всех A-значных функций (т. е. в данном случае последовательностей) $u=(u_1,\ u_2,\ldots)$ таких, что $(\|u_1\|_A,\ \|u_2\|_A,\ldots)$ $\equiv E;\ E(A)$ — банахово

пространство по норме $||u||_{E(A)} = ||(||u_1||_A, ||u_2||_A, \ldots)||_E$.

Напомним, что метод констант (K-метод) построения интерполяционных пространств (2) состоит в том, что банаховой паре A_0 , A_1 и двум ф.б.р. E_0 , E_1 на (R, μ) , $E_0+E_1 \Rightarrow e$, $e=(1, 1, \ldots)$, сопоставляется сумма $E_0(\hat{A}_0)+E_1(A_1)$, в которой выделяется замкнутое подпространство постоянных функций (отождествляемых с их значениями) (A_0 , A_1) $_{E_0,E_1}^K$, оно и будет банаховым интерполяционным пространством K-метода. Метод средних (J-метод) построения интерполяционных пространств (2) состоит в том, что банаховой паре A_0 , A_1 и двум ф.б.р. E_0 , E_1 на (R, μ) , $E_0'+E_1'\Rightarrow e$, $E_0\cap E_1\neq \{0\}$, сопоставляется пересечение $E_0(A_0)\cap E_1(A_1)$ и линейный оператор J: $u\mapsto$

 $\mapsto \sum_{n=1}^{\infty} u_n \mu_n$, непрерывный из $E_0(A_0) \cap E_1(A_1)$ в $A_0 + A_1$; фактор-пространство-

 $E_{0}(A_{0})\cap E_{1}(A_{1}) / J^{-1}(0)$ (отождествляемое с пространством значений оператора J) обозначается через $(A_{0},A_{1})_{E_{0},E_{1}}^{J}$; оно и будет банаховым интерноляционным пространством J-метода.

Лемма 1. Множество всех простых функций из правильной ф.б.р. Е

всюду плотно в E.

Из леммы 1 вытекает

 Π емм а 2. Если E- правильная ф.б.р. на (R, μ) , A- банахово пространство, то множество A-значных финитных на R функций плотно в E(A). Палее, верна

T е о р е м а 1.* E сли E — правильная ϕ .б.р. на (R, μ) , а A — банахово

пространство, то $[E(A)]^*$ изометрически изоморфно $E'(A^*)$.

Доказательство. Пусть $u^* = [E(A)]^*$. Взяв x = A, $\varphi = (\varphi_1, \varphi_2, \ldots) = E$ и положив $\varphi x = (\varphi_1 x, \varphi_2 x, \ldots) = E(A)$, имеем $|\langle \varphi x, u^* \rangle| \leq \|x\|_A \|u^*\|_{L^2(A)^{1^*}} \|\varphi\|_E$. Так как E — правильная φ .б.р., то для каждого фиксированного x найдется единственный элемент $\varphi'(x) = (\varphi_1'(x), \varphi_2'(x), \ldots)$ пространства E' такой, что $\langle \varphi x, u^* \rangle = \sum_{n=1}^{\infty} \varphi_n \varphi_n'(x) \mu_n$. Определим на A функционалы u_n^* равенствами $\langle x, u_n^* \rangle = \varphi_n'(x), n = 1, 2, \ldots$ Ясно, что u_n^* линейны п для всякой функции $u = (u_1, \ldots, u_N, 0, 0, \ldots) = E(A)$ выполняется равенство $\langle u, u^* \rangle = \sum_{n=1}^{N} \langle u_n, u_n^* \rangle \mu_n$. Следовательно, $\|\varphi\|_E \|u^*\|_{[E(A)]^*} \ge \sum_{n=1}^{N} \varphi_n \|u_n^*\|_{A^*} \mu_n$, $0 \le \varphi \in E$, $N = 1, 2, \ldots$ Таким образом, $\tau u^* = (u_1^*, u_2^*, \ldots)$ принадлежит $E'(A^*)$ и $\|u^*\|_{[E(A)]^*} \ge \|\tau u^*\|_{E'(A)^*}$. Далее, линейный функционал на E(A), определенный выражением $\sum_{n=1}^{\infty} \langle u_n, u_n^* \rangle \mu_n$, $u = (u_1, u_2, \ldots) \in E(A)$, непрерывен и совпадает на множестве A-значных финитных функций с u^* , τ . е. (по лемме 2) и всюду $\langle u, u^* \rangle = \sum_{n=1}^{\infty} \langle u_n, u_n^* \rangle \mu_n$. Теперь легко видеть, что оператор τ осуществляет между $[E(A)]^*$ и $E'(A^*)$ изометрический изоморфизм, ибо $|\langle u, u^* \rangle | \le \sum_{n=1}^{\infty} \|u_n\|_A \|u_n^*\|_{A^*} \mu_n \le \|u\|_{E(A)} \|\tau u^*\|_{E'(A^*)}$, τ . е. $\|u^*\|_{[E(A)]^*} \le \|\tau u^*\|_{E'(A^*)}$.

 Π емма 3. Если E_0 , $E_1-\partial se$ правильные ф.б.р. на (R, μ) , A_0 , $A_1-\delta a$ -нахова пара, $A_0\cap A_1$ плотно в A_0 и в A_1 , то множество $A_0\cap A_1$ -значных финитных на R функций плотно в $E_0(A_0)$ и в $E_1(A_1)$.

Следствие. $E_0(A_0) \cap E_1(A_1)$ плотно в $E_0(A_0)$ и в $E_1(A_1)$.

 Π емма 4. B предположениях леммы 3 пространство $[E_0(A_0)+E_1(A_1)]^*$

изометрически изоморфно пространству $E_0'(A_0^*) \cap E_1'(A_1^*)$.

Доказательство. По теореме Ароншайна — Гальярдо $[E_0(A_0)+E_1(A_1)]^*=[E_0(A_0)]^*\cap [E_1(A_1)]^*$. Пусть $\tau_i\colon [E_i(A_i)]^*\to E_i'(A_i^*),\ i=0,1,-$ оператор изометрического изоморфизма, найденный в теореме 1. Пусть $u^*\in [E_0(A_0)]^*\cap [E_1(A_1)]^*,\ \tau_iu^*=(u_{i1}^*,u_{i2}^*,\ldots).$ Тогда при $u=(u_1,u_2,\ldots)\in E_0(A_0)\cap E_1(A_1)$ имеем $\langle u,u^*\rangle=\sum\limits_{n=1}^\infty \langle u_n,u_{0n}^*\rangle \mu_n=\sum\limits_{n=1}^\infty \langle u_n,u_{1n}^*\rangle \mu_n$, откуда $u_{0n}^*=u_{1n}^*$ на $A_0\cap A_1$. Обозначим через u_n^* функционал из $(A_0\cap A_1)^*$, совпадающий на $A_0\cap A_1$ с $u_{0n}^*=u_{1n}^*$. Ясно, что u_n^* непрерывен на $A_0\cap A_1$ в норме пространства A_0+A_1 и, следовательно, единственным образом продолжается до функционала из $(A_0+A_1)^*$. Это продолжение мы снова обозначим u_n^* . Сужение u_n^* на A_i совпадает, очевидно, с u_{in}^* , i=0, 1. Поэтому $(\|u_1^*\|_{A_1^*}, \|u_2^*\|_{A_1^*}, \ldots) \in E_i'$, т. е. (u_1^*,u_2^*,\ldots) — точка пространства $E_0'(A_0^*)\cap E_1'(A_1^*)$.

Кроме того, $\langle u, u^* \rangle = \sum_{n=1}^{\infty} \langle u_n, u_n^* \rangle \mu_n$. Теперь понятно, что оператор, осуществляющий требуемый изометрический изоморфизм, можно определить равенством $\tau u^* = (u_1^*, u_2^*, \ldots)$.

Лемма 5. Если E_0 , $E_1 - \partial se$ ф.б.р. на (R, μ) , $E_0 + E_1 \Rightarrow e$, $E_i \neq e$, i = 0, 1, 1

 $A_{\mathtt{0}},\,A_{\mathtt{1}}$ — банахова пара, то $A_{\mathtt{0}} \cap A_{\mathtt{1}}$ плотно и в $(A_{\mathtt{0}},\,A_{\mathtt{1}})_{E_{\mathtt{0}},E_{\mathtt{1}}}^{K}$

Теорема 2. Пусть E_0 , $E_1 - \partial ве$ правильные ф.б.р. на (R, μ) , $E_0 + E_1 \Rightarrow e$, $E_i \not\ni e$, i = 0, 1, пересечение $A_0 \cap A_1$ плотно в каждом из пространств банахо-

^{*} Утверждение теоремы получено и в (5) при дополнительных ограничениях на E.

вой пары $A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 1}.$ Тогда пространство [$(A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 1})_{E_{\scriptscriptstyle 0},E_{\scriptscriptstyle 1}}^{\rm K}$]* изометрически изоморфно пространству $(A_{\scriptscriptstyle 0}{}^*,A_{\scriptscriptstyle 1}{}^*)_{E'_{\scriptscriptstyle 0},E'_{\scriptscriptstyle 1}}^{J}$

Доказательство. Сопряженное к $(A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 1})^{K}_{E_{\scriptscriptstyle 0},E_{\scriptscriptstyle 1}}$ изометрически изоморфно фактор-пространству $[E_0(A_0)+E_1(A_1)]/[\overline{(A_0,A_1)}_{E_0,E_1}^K]^{\perp}$, где аннулятор берется в $[E_0(A_0)+E_1(A_1)]^*$. По лемме 4 получаем, что $[(A_0,A_1)_{E_0,E_1}^K]^*$ изометрически изоморфно пространству $E_0'(A_0^*)\cap E_0(A_0^*)$ $\bigcap E_{i}'(A_{i}^{*}) / [(A_{0}, A_{i})_{E_{0}, E_{1}}^{K}]^{\perp}$, где аннулятор берется в $E_{0}'(A_{0}^{*}) \cap E_{i}'(A_{i}^{*})$. Для доказательства теоремы достаточно проверить справедливость равенства [$(A_0, A_1)_{E_2, E_1}^K$] $^\perp = J^{-1}(0)$, где J — интеграл в $A_0^* + A_1^*$ от функций из $E_{0}'(A_{0}^{*}) \cap E_{1}'(A_{1}^{*})$ по (R, μ) .

Пусть $u^* = (u_1^*, u_2^*, \ldots) \in E_0'(A_0^*) \cap E_1'(A_1^*)$ и $\langle u, u^* \rangle = 0$ при $u \in (A_0, A_1)_{E_0, E_1}^K$. Возьмем, в частности, $u = (x, x, \ldots), x \in A_0 \cap A_1$, тогда

$$0 = \sum_{n=1}^{\infty} \langle x, u_n^* \rangle \mu_n = \langle x, \sum_{n=1}^{\infty} u_n^* \mu_n \rangle, \text{ т. е. } \sum_{n=1}^{\infty} u_n^* \mu_n = 0 \text{ м. } u^* \subseteq J^{-1}(0) \text{. Обратно,}$$

 $nycrь u^* \in J^{-1}(0)$, т. е. ряд $\sum_{n=1}^{\infty} u_n^* \mu_n$ абсолютно сходится в $A_0^* + A_1^*$ к нулю.

Тогда при $u=(x,\,x,\,\ldots),\;x\in A_0\cap A_1,\;$ имеем $\langle u,\,u^*\rangle=0.$ С учетом леммы 5 получаем, что $u^*\in [\;(A_0,\,A_1)_{E_0,E_1}^K\;]^\perp.$

 Π емма 6. B предположениях леммы 3 пространство $[E_0(A_0) \cap E_1(A_1)]^*$

изометрически изоморфно пространству $E_0'(A_0^*)+E_1'(A_1^*)$.

Теорема 3. Пусть E_0 , $E_1-\partial se$ правильные ф.б.р. на (R, μ) , E_0' , E_1' также правильны, $E_0'+E_1'\ni e$, $E_i'\not\ni e$, $i=0,1,A_0,A_1-\delta a$ нахова пара, $A_0\cap A_1$ nлотно в A_0 и в A_1 .

Тогда пространство [$(A_0,\ A_1)_{E_0,E_1}^J$]* изометрически изоморфно прост-

ранству $(A_0^*, A_1^*) \frac{K}{E_1', E_1'}$

Доказательство. Сопряженное к $(A_{\scriptscriptstyle 0},\,A_{\scriptscriptstyle 1})_{E_{\scriptscriptstyle 0},E_{\scriptscriptstyle 1}}^{J}$ изометрически изоморфно $[J^{-1}(0)]^{\perp}$, где J — интеграл в $A_0 + A_1$ от функций из $E_0(A_0) \cap E_1(A_1)$ по (R, μ) , а аннулятор берется в $[E_0(A_0) \cap E_1(A_1)]^*$, т. е. согласно лемме 6 в $E_0'(A_0^*) + E_1'(A_1^*)$. Для доказательства теоремы достаточно проверить справедливость равенства $[J^{-1}(0)]^{\perp} = (A_0^*, A_1^*)_{E'_0, E'_1}^R$. При $u^* = (u_1^*, u_2^*, \ldots) \in [J^{-1}(0)]^{\perp}, u = (u_1, u_2, \ldots) \in J^{-1}(0)$

 $\langle u, u^* \rangle = 0$, т. е. $\sum_{n=1}^{\infty} \langle u_n, u_n^* \rangle \mu_n = 0$, откуда вытекает, что $u_n^* = u_{n+1}^*$ (положим,

например, $u_n = x$, $u_{n+1} = -\frac{\mu_n}{\mu_{n+1}} x$, $x \in A_0 \cap A_1$, $u_m = 0$ при $m \neq n, n+1$), $n = 1, 2, \ldots$, т. е. $u^* \in (A_0^*, A_1^*) \stackrel{K}{\underset{E'_0, E'_1}{K}}$. Обратно, пусть $u^* = (x^*, x^*, \ldots)$, $x^* \in A_0^* \cap A_1^* = x^*$ $=(A_0+A_1)^*, u\in J^{-1}(0)$. Тогда $\langle u, u^* \rangle = \sum_{n=1}^{\infty} \langle u_n, x^* \rangle \mu_n = \langle \sum_{n=1}^{\infty} u_n \mu_n, x^* \rangle = 0$. Из

леммы 5 легко вывести, что множество функций $u^* = (x^*, x^*, ...)$ с $x^* \in A_0^* \cap A_1^*$ плотно в $(A_0^*, A_1^*) \stackrel{K}{E_{1}, E_1}$. Из непрерывности билинейной формы $\langle u, u^* \rangle$ на $[E_0(A_0) \cap E_1(A_1)] \times [E_0'(A_0^*) + \hat{E}_1'(A_1^*)]$ следует, что $(A_0^*, A_1^*)_{E_0, E_1'}^K \subset [J^{-1}(0)]^\perp$.

В заключение автор выражает благодарность С. Г. Крейну за постановку задачи и руководство работой.

> Поступило 16 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ N. Aronszajn, E. Gagliardo, Ann. Mat. Pure Appl. (4), 68, 51 (1965).
² В. И. Дмитриев, ДАН, 198, № 4, 747 (1971).
³ С. Г. Крейн и др., Функциональный анализ, «Наука», 1972.
⁴ J. L. Lions, J. Peetre, Inst. Hautes Etudes Sci. Publ. Math., 19, 5, 5 (1964).
⁵ N. E. Gretsky, J. J. Uhljr., Trans. Am. Math. Soc., **167**, 2 (1972).