УДК 513.838

MATEMATUKA

В. А. ЕФРЕМОВИЧ, В. С. ТИХОМИРОВА

ОБЪЕМЫ И ЕМКОСТИ В ГЕОМЕТРИИ БЛИЗОСТИ

(Представлено академиком П. С. Новиковым 4 V 1973)

Здесь изучаются свойства ранее введенных авторами инвариантов близости.

1. δ -О бъем. Это обобщение объемного инварианта (1). Обозначим M_{α} и назовем α -в мести мостью вполне ограниченного множества M, лежащего в геодезическом пространстве (2), максимальное число точек, вмещающихся в M так, что расстояние между любыми двумя из них не меньше α >0. Всюду в дальнейшем рассматриваются геодезические пространства R, удовлетворяющие следующему условию — аналогу условия A. Шварца (3): для любых α >0, r>0 — α -вместимость шара радиуса r ограничена сверху константой B= $B(r,\alpha)$ (существенно, что B не зависит от положения центра шара).

а) Для $\alpha < \beta$ справедливо неравенство (p — положительная константа)

$$M_{\mathfrak{p}} \leqslant M_{\mathfrak{q}} \leqslant pM_{\mathfrak{p}}.$$
 (1)

Покроем M шарами радиуса β , для этого, конечно, достаточно M_{β} шаров, α -вместимость каждого не превосходит $p=B(\beta,\alpha)$.

б) Если f — эквиморфизм пространства R в R_i , то α -вместимости $M \subseteq R$ и M' = f(M) удовлетворяют неравенству

$$q^{-1}M_a \leq M_a \leq qM_a, \tag{2}$$

q > 0 — некоторая константа.

Действительно, известно, (4), что при эквиморфизме f для любого $\alpha>0$ найдется $C=C(\alpha)$ такое, что $C^{-1}\leqslant \rho(f(x),f(y))/\rho(x,y)\leqslant C$, как только расстояния $\rho(x,y)\geqslant \alpha$ или $\rho(f(x),f(y))\geqslant \alpha$. Так как M покрывается M_{α} шарами радиуса α , то M' покрывается M_{α} шарами радиуса $C\alpha$. Если q_1 —максимальная α -вместимость шара радиуса $C\alpha$ в R_1 , то $M_{\alpha}'\leqslant q_1M_{\alpha}$. Аналогично $M_{\alpha}\leqslant q_2M_{\alpha}'$, где $q_2=B(C\alpha,\alpha)$ в R. При $q=\max(q_1,q_2)$ выполняется (2).

Дадим определение δ -объема неограниченного множества $N \subset R$. Взяв произвольную точку $o \subseteq R$, рассмотрим α -вместимость $n_{\alpha}(r)$ пересечения $D_{\tau} \cap N$, где D_{τ} — шар радиуса r с центром в o. Порядок роста (¹) функции $n_{\alpha}(r)$, как легко видеть, не зависит от выбора точки o и в силу (1) не зависит от α . Его и назовем δ -о δ ъ е м о м N и обозначим |N|.

T е о р е м а 1. δ -Объем — инвариант эквиморфизмов.

Пусть $f: R \to R_1$ — эквиморфизм, o' = f(o), N' = f(N), $D_1(r)$ — шар радиуса r в R_1 с центром в o'. Для $r \geqslant \alpha$ получим $D_1(C^{-1}r) \cap N' \subseteq f(D(r) \cap N) \subseteq CD_1(Cr) \cap N'$. Обозначив n_{α}' и $n_{1\alpha}(r)$ — вместимость $f(D(r) \cap N)$ и $D_1(r) \cap N'$ соответственно, в силу (2) будем иметь $q^{-1}n_{1\alpha}(C^{-1}r) \leqslant q^{-1} \cdot n_{\alpha}' \leqslant n_{\alpha}(r) \leqslant qn_{1\alpha}(Cr)$, а отсюда $\pi n_{\alpha}(r) = \pi n_{1\alpha}(r)$. (Здесь и в дальнейшем $\pi \varphi(r)$ — порядок роста функции $\varphi(r)$.)

2. «Объем» бесконечно удаленных множеств. В этом пункте рассматриваются многообразия R^n с бесконечно удаленной сферой U и их стабильные отображения (5). Бесконечно удаленная сфера (или сфера направлений) — это множество бесконечно удаленных точек всех прямолинейных лучей, причем две бесконечно удаленные точки считаются

совпадающими, если порождающие их лучи ограниченно отклоняются один

от другого.

Пусть $A \subset U$ и $\varkappa(A)$ — конус, построенный абстрактно на A (в простейшем случае, когда A-k-мерный симплекс, $\varkappa(A)$ — просто (k+1)-мерный симплекс с (k+2)-й вершиной \varkappa). Если φ — гомеоморфизм конуса $\varkappa(A)$ в $\widetilde{R}^n = R^n \cup U$, тождественный на A, то $|\varphi(\varkappa(A))|$, вообще говоря, зависнт от φ . Нижнюю грань $|\varphi(\varkappa(A))|$ при всевозможных φ назовем объемом A и обозначим |A|; эта нижняя грань может и не принадлежать решетке всех порядков роста, она будет элементом ее дедекиндова пополнения с помощью сечений (6). Легко видеть, что |A| — инвариант стабильных отображений.

Пример. Прямое произведение $H^2 \times E^4$ плоскости Лобачевского H^2 на прямую E^4 . Это многообразие, будучи пополнено бесконечно удаленной сферой U, гомеоморфно шару D^3 . Меридианом сферы U служит $u \times E^4$, где u — произвольная бесконечно удаленная точка H^2 . Все прямые $a \times E^4$, $a \in H^2$, имеют общую пару бесконечно удаленных точек — полюсы N и S. Если g — прямая из H^2 , то $g \times E^4$ имеет метрику эвклидовой плоскости.

а) При стабильных эквиморфизмах $H^2 \times E^1$ на себя каждый меридиан переходит в меридиан. Действительно, для любой дуги A меридиана объем |A|=2 (т. е. порядку роста квадратичной функции). Если бы образ A'=-f(A) не помещался на меридиане, то |A'| был бы равен порядку экспоненциальной функции, что противоречило бы инвариантности «объема».

б) При любом эквиморфизме (вообще говоря, не стабильном) плюс переходит в полюс. Заметим, что прямолинейный луч Γ может перейти в линию Γ' , имеющую бесконечно много предельных точек на U, однако все они должны принадлежать одному меридиану, иначе δ -объем $|\Gamma'|$ был бы равен порядку экспоненциальной функции, в то время как $|\Gamma|=1$. Точно так же, если Δ —сектор, опирающийся на дугу меридиана, то его образ Δ' должен все свои бесконечно удаленные предельные точки сосредоточить на одном меридиане ($|\Delta|=2<\pi(e^x)$). Пусть σ и σ_1 —дуги двух меридианов, начинающиеся в N, Δ и Δ_1 —секторы, опирающиеся на них, $\Gamma=\Delta\cap\Delta_1$ —луч, идущий в N. Все бесконечно удаленные предельные точки Δ' принадлежат одному меридиану, то же и для Δ_1' . Меняя Δ , получим, что луч $\Gamma=\Delta\cap\Delta_1$ перейдет в лицию, имеющую единственную бесконечно удаленную точку, лежащую на всех меридианах, именно полюс N или S.

3. k - Емкость пространства. Пусть Z — носитель сингулярного k-мерного цикла, гомологичного нулю в R, Z_{α} — его α -вместимость. Из ценей, аннулирующих Z, выберем цепь, носитель которой X имеет минимальную α -вместимость. Рассмотрим функцию $\varphi_{\alpha}(t) = \sup_{z \in \mathcal{I}} X_{\alpha}$, где $\sup_{z \in \mathcal{I}} X_{\alpha}$, где $\sup_{z \in \mathcal{I}} X_{\alpha}$

по всем k-циклам Z, для которых $Z_{\alpha} \leqslant t$. Будем предполагать, что $\phi_{\alpha}(t) < +\infty$ для t > 0. (Конечно, легко привести пример, когда это не так, но нас интересуют именно те пространства, для которых это условие выполняется.) $\pi \phi_{\alpha}(t)$ назовем k-емкостью пространства R п обозначим $\chi^{k}(R)$.

Теорема 2. $\chi^h = \pi \varphi_\alpha(t)$ не зависит от α .

Пусть $\alpha < \beta$. Обозначим через Y носитель той аннулирующей цепи, для которой β -вместимость Y_{β} имеет минимальное значение. Тогда $Y_{\beta} \leqslant X_{\beta} \leqslant X_{\alpha}$ и $Z_{\beta} \leqslant t \Rightarrow Z_{\alpha} \leqslant pt$ (см. (1)), поэтому $\varphi_{\beta}(t) = \sup_{Z_{\alpha} \leqslant t} Y_{\beta} \leqslant \sup_{Z_{\alpha} \leqslant pt} X_{\alpha} = \varphi_{\alpha}(pt)$, т. е.

$$\pi \phi_{\beta} \leqslant \pi \phi_{\alpha}$$
; с другой стороны, $X_{\alpha} \leqslant Y_{\alpha} \leqslant p Y_{\beta}$ и $Z_{\alpha} \leqslant t \Rightarrow Z_{\beta} \leqslant t$, поэтому
$$\phi_{\alpha}(t) = \sup_{Z_{\alpha} \leqslant t} X_{\alpha} \leqslant p \sup_{Z_{\beta} \leqslant t} Y_{\beta} = p \phi_{\beta}(t), \text{ т. e. } \pi \phi_{\alpha} \leqslant \pi \phi_{\beta}.$$

Итак, $\pi \phi_{\alpha} = \pi \phi_{\beta}$.

T е о р е м а $3.\chi^{k}(R)$ — инвариант эквиморфизмов.

Пусть f — эквиморфизм R на R'. Сохраняя прежние обозначения и обозначая, кроме того, штрихом образ точки и множества, заметим, что X' может не давать минимума α -вместимости для аннулирующих Z' цепей.

Пусть этот минимум достигается на Y', $Y=f^{-1}(Y')$. Тогда $X_{\alpha} \leqslant Y_{\alpha}$ и (см. (2)) $q^{-1}X_{\alpha} \leqslant q^{-1}Y_{\alpha} \leqslant Y_{\alpha}'$, а так как $Z_{\alpha} \leqslant t \Rightarrow Z_{\alpha}' \leqslant qt$, имеем $\varphi_{\alpha}(t) = \sup_{Z_{\alpha} \leqslant t} X_{\alpha} \leqslant q \sup_{Z_{\alpha}' \leqslant qt} Y_{\alpha}' = q \varphi_{\alpha}'(qt)$, где φ_{α}' — соответствующая функция для R'.

Итак, $\chi^h(R) \leq \chi^h(R')$. Таким же образом, в силу равноправия R и R',

 $\chi^{k}(R') \leq \chi^{k}(R)$.

Пример. Орициклический карман (7) (т. е. универсальная накрывающая псевдосферы или два экземпляра внутренней области орицикла, скленных по границе) не эквиморфен плоскости Лобачевского H^2 , хотя пх δ -объемы одинаковы. Действительно, χ^1 для кармана равна $\pi \exp t$,

 $a \chi^{1}(H^{2}) = 1.$

4. k - Емкость пути. Пусть в пространстве R задан путь W: x=x(t), τ . е. непрерывное отображение прямолинейного луча $t\geqslant 0$. Рассмотрим всевозможные k-мерные гомологичные нулю циклы, носители которых Z проходят через точки $x(\tau)$, $t\leqslant \tau<+\infty$, и имеют α -вместимости $Z_{\alpha}\leqslant at$, a — некоторая константа. Для каждого из них строим аннулирующую цепь, минимальную по α -вместимости X_{α} ее носителя X. Обозначим верхнюю грань множества чисел X_{α} по всем рассматриваемым Z через $\mu_{\alpha,\alpha}(t)$: $\mu_{\alpha,\alpha}(t) = \sup X_{\alpha}$. (Как и в п. 3, предполагаем, что $\mu_{\alpha,\alpha}(t) < +\infty$.)

При $a_1 < a_2$ имеем $\mu_{a_1, \alpha}(t) \le \mu_{a_2, \alpha}(t)$. Нижнюю грань порядков роста функций $\mu_{a, \alpha}(t)$ при фиксированном α и всевозможных a > 0 обозначим $\gamma^*(w)$ и назовем k - емкостью пути w. Как и в п. 2, эта нижняя грань

принадлежит, вообще говоря, пополнению решетки порядков роста.

T е о р е м а 4. k-Емкость пути не зависит от α .

При $\alpha < \beta$, следуя доказательству теоремы 2, имеем $\mu_{\alpha, \beta}(t) = \sup_{Z_{\beta} \leqslant at} Y_{\beta} \leqslant \sup_{Z_{\alpha} \leqslant apt} X_{\alpha} = \mu_{ap, \alpha}(t)$, а также $\mu_{a, \alpha}(t) = \sup_{Z_{\alpha} \leqslant at} X_{\alpha} \leqslant p \sup_{Z_{\beta} \leqslant at} Y_{\beta} = p \mu_{a, \beta}(t)$.

Итак, $p^{-1}\mu_{a,\alpha}(t) \leq \mu_{a,\beta}(t) \leq \mu_{ap,\alpha}(t)$. Отсюда следует утверждение теоремы.

T е о р е м а 5, k-Емкость nyru — инвариант эквиморфизмов.

Пусть f — эквиморфизм пространства R на R'. w: x=x(t) — путь на R, w': x'=x'(t) — его образ на R', f(x(t))=x'(t).

x = x (t) — его образ на x, у (ж. (г.)) — x = x (г.). Следуя доказательству теоремы 3, имеем $\mu_{a,\alpha}(t) = \sup_{z_{\alpha} \leq at} X_{\alpha} \leq q \sup_{z_{\alpha'} \leq aqt} Y_{\alpha'} = x$

 $=q\mu_{aq,\alpha}'(t)$.

Итак, $\gamma^k(w) \leq \gamma^k(w')$. В силу равноправия R и R' имеем противополож-

ное неравенство.

5. Èмкость путей в многообразиях сферической симметрии. Пусть R^n —n-мерное риманово многообразие с элементом длины $ds^2 = d\rho^2 + F^2(\rho) d\sigma^2$, где ρ , σ —сферические координаты (σ принадлежит сфере Σ^{n-1} : $F(\rho) = 1$; $d\sigma$ —проекция элемента ds на Σ^{n-1}). Рассмотрим на R^n путь w: x = x(t) такой, что

$$c^{-1}t \leq \rho(t) \leq ct, \quad t_0 \leq t < +\infty,$$
 (3)

где $\rho(t)$ — первая координата точки x(t), c>1 — некоторая константа. Какой-нибудь координатный луч $\sigma=\sigma_0$ снабдим естественной параметризацией $t=\rho$, превратив его в путь $\overline{w}: \overline{x}=\overline{x}(t)$. Обозначим введенные в п. 4 функции для путей w и \overline{w} через μ и $\overline{\mu}$ соответственно.

T е о р е м а 6. k-Емкости путей w и \overline{w} равны.

Заметим, что для любого множества M, содержащего точку (ρ, σ) , найдется изометричное ему множество, содержащее точку (ρ, σ_0) ; поэтому каждому $Z \ni x(\tau)$, $x(\tau) = (\rho(\tau), \sigma(\tau))$ соответствует $\overline{Z} \ni \overline{x} (\rho(\tau))$ такой, что $Z_\alpha = \overline{Z}_\alpha$, $X_\alpha = \overline{X}_\alpha$. Из этого обстоятельства и неравенства (3) следует

$$\mu_{1,\alpha}\left(t\right) = \sup_{\substack{Z_{\alpha} \leqslant t \\ x(\tau) \in \mathbb{Z}, t \leqslant \tau < \infty}} X_{\alpha} \geqslant \sup_{\substack{\overline{Z}_{\alpha} \leqslant (1 \text{ c}) ct \\ \overline{x}(\tau) \in \overline{Z}, ct \leqslant \tau < \infty}} \overline{X}_{\alpha} = \bar{\mu}_{c^{-1},\alpha}\left(ct\right).$$

Итак, $\bar{\mu}_c^{-1}$, $\alpha(ct) \leq \mu_{1,\alpha}(t)$. Таким же образом получаем $\bar{\mu}_{c,\alpha}(c^{-1}\tau) \geq \mu_{1,\alpha}(t)$. Из полученного двойного неравенства следует утверждение теоремы.

Спедствие 1. Если пути $x_1(t)$ и $x_2(t)$ удовлетворяют условию (3),

то их к-емкости совпадают.

Спедствие 2. Орициклический карман не эквиморфен никакой по-

верхности вращения.

Это теорема, доказанная Де-Спиллером (7). Для доказательства фиксируем некоторую точку o на граничном орицикле и рассмотрим две линии: ветвь граничного орицикла и ось орицикла, выходящие из точки o. Введем на них параметризации $x_1(t)$ и $x_2(t)$, приняв за параметр t расстояние от соответствующих точек до точки o. Полученные пути обозначим через w_1 и w_2 . Предположим теперь, что наша поверхность эквиморфна некоторой поверхности вращения. Можно считать, что точка o при этом эквиморфизме переходит в центр поверхности вращения. Пусть c^{-1} , c — константы отображения, w_1' и w_2' — образы наших путей. Они удовлетворяют условию (3), следовательно, их k-емкости равны, а значит, равны k-емкости путей w_1 и w_2 . Но $\gamma^1(w_1) = \pi \exp t$, $\gamma^1(w_2) = 1$; итак, $\gamma^1(w_1) > \gamma^1(w_2)$.

Благодарим А. Г. Вайнштейна за ценные критические замечания.

Воронежский государственный университет им. Ленинского комсомола

Поступило 30 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Ефремович, УМН, 8, 5, 189 (1953). ² В. А. Ефремович, УМН, 4, 2, 178 (1949). ³ А. С. Шварц, Уч. зап. Ивановск. пединст., 5, 9 (1954). ⁴ Е. С. Тихомирова, Изв. АН СССР, сер. матем., 26, 6, 865 (1962). ⁵ В. А. Ефремович, Э. А. Логинов, Е. С. Тихомирова, ДАН, 197, № 1, 25 (1971). ⁶ Г. Бирктоф, Теория структур, М., (1952). ⁷ Д. А. Де-Спиллер, ДАН, 185, № 6, 1219 (1969).