УДК 577.1 *БИОХИМИЯ*

А. А. ИВЛЕВ, М. Я. КОРОЛЕВА

О ФРАКЦИОНИРОВАНИИ ИЗОТОПОВ УГЛЕРОДА В ЖИВЫХ ОРГАНИЗМАХ

(Представлено академиком А. И. Опариным 23 VIII 1973)

Вопросы фракционирования изотопов в живых организмах еще мало изучены. Экспериментально установлено (1), что при фотосинтезе карбоксильная группа аминокислот оказывается обогащенной по изотопу углерода C¹³ относительно декарбоксилированного остатка. Степень обогапленности меняется в зависимости от типа аминокислоты и от вида ассимилирующего CO₂ организма. Для решения вопроса о том, являются ли наблюдаемые изотопные различия следствием фракционирования, сопровождающего ассимиляцию атмосферной углекислоты организмом, или физико-химическими изотопными эффектами, сопровождающими процессы метаболизма, нами рассмотрены основные пути ассимиляции СО2 и связанные с ними метаболические циклы, в ходе которых происходит биосинтез углеродов и аминокислот. Мы исходили из экспериментально установленного факта ((¹, ⁵) и др.), что изотопный состав биогенного углерода легче изотопного состава углерода СО2. В этой статье мы не анализируем причин возникновения «исходных» различий, а рассматриваем лишь причины сохранения их, несмотря на многократное прохождение атмосферного углерода через метаболические циклы в процессе круговорота.

Обнаружено, что основными факторами, обусловливающими сохранение различий изотопного состава углерода в живых организмах и в атмосфере, являются практическая необратимость биохимических процессов и строгая стереоспецифичность взаимодействий субстратов с ферментами. Концентрирование тяжелого изотопа С¹³ в карбоксильных группах аминокислот не связано в основном с физико-химическими изотопными эффектами, а является следствием действия указанных факторов в процессах фиксации СО₂ в реакции Вуда — Веркмана и фотосинтетическом

пикле. Опыты с С13О2, добавленной вместе с пировиноградной кислотой к препарату, содержащему ферменты карбоксилирования и ферменты, катализирующие реакции цикла Кребса, показали (2), что вся метка оказывается лишь в одном из карбоксильных атомов с-кетоглутаровой кислоты. Анализ этого эффекта (3,4) приводит к выводу, что он связан со стереоспецифичностью фермента, которая делает пространственно различимыми карбоксильные группы лимонной кислоты, являющейся продуктом фиксации СО2 (эффект Огстона). Эта абсолютная стереоспецифичность является существенной в отношении биосинтеза неравномерно изотопномеченых соединений. Поскольку атмосферная углекислота обогащена по С13 относительно биокомпонентов, то механизм типа эффекта Огстона при фиксации СО2 приводит к возникновению изотопных эффектов Δ между карбоксильной группой аспарагиновой и глутаминовой кислот и декарбоксилированным остатком. Эти эффекты являются псевдоизотопными, так как не связаны с нормальными физико-химическими изотопными эффектами. Поступление экзогенного углерода в карбоксильную группу аспарагиновой кислоты возможно благодаря функционированию

цикла не только в сторону образования α -кетоглутаровой кислоты, но и в направлении от щавелевоуксусной через яблочную и фумаровую к янтарной кислоте. При этом C^{13} оказывается равнораспределенным между симметричными карбоксильными группами фумаровой кислоты, и это распределение наследуется остальными дикарбоновыми кислотами. Тем самым обе карбоксильные группы дикарбоновых кислот оказываются обогащенными по C^{13} . На псевдоизотопные эффекты пакладываются меньшие по масштабу реальные эффекты, связанные с процессами ассимиляции CO_2 , что приводит к изотопным различиям углерода карбоксильных групп п поглощаемой углекислоты (табл. 1). В некоторых случаях эти

Таблица 1 Изотопные эффекты углерода (δC^{13}) в аминокислотах, связанных с циклом Кребса (по данным (1)) *

Аминокислота	Chlorella	Anacystis	Scenedes- mus	Chromati- um	Eyglena	Gracilaria
	İ				1,019	
Глутаминовая кислота						
радикал	-21.1	-16,7	-26,6	-20,1		19,3
карбоксил	-8.8	+11,7	-5,6	+2,2	-21.5	-8.4
Δ	1,012	1,028	1.021	1,022	-0.2	1,011
Аргинин					1,021	1
радикал	-22.6	_	_	_	,	15,9
карбоксил	-2.6		_		-19.8	-3.6
Δ	1,020	_	-	_	+3.6	1,011
Аспарагиновая кислота	AND DESCRIPTION OF STREET	F 440 F			1,023	
радикал	-15,6	-22,1	-24.3	-27.6	- 1	-18,4
карбоксил	+2,2	+2,8	-0.8	-15,9	-20,3	-5,3
Δ	1.018	1,025	1.023	1.012	+1.9	1,013
Серин		0.00			1,021	
радикал	-9.9	_	1111 2	-8,4		10,8
карбоксил	-2.5	7.3	_	-2,8	-9,5	-8,8
Δ	1,007	-	-	1.005	6.1	1,002
Аланин	and the same of				1,003	1
радикал	-11.8	-14.2	-20,8	_		-17.2
карбоксил	-7.3	+0.2	-13.5	_	-14,6	-11,5
Δ	1,005	1.014	1,007	_	13,8	1.006
Лейцин	N CONTRACTOR	1			1,001	
радикал	-26.0	-17.8	-22,2	-23,7	Ì	-25,1
карбоксил	-16.3	-15,0	-17.8	-22,5	-25,6	-24.1
Δ	1.010	1,003	1,004	1,001	-13,6	0,998

^{*} Величины δC^{13} приведены относительно ассимилируемой CO_2 , для которой принято $\delta C^{13} = 0$, $\Delta = 1 + (\delta C^{13}R - C^*OOH - \delta C^{13}R^* - COOH) \cdot 10^3$.

различия обусловлены попаданием в карбоксильную группу легкого по изотопному составу углерода алкильного радикала аминокислот при метаболизме. В глутаминовой кислоте лишь одна карбоксильная группа утяжелена вследствие эффекта Огстона. В известных биохимических процессах, приводящих к образованию аргинина, легкая карбоксильная группа глутаминовой кислоты переходит в алкильный радикал, и, таким образом, у аргинина псевдоизотопный эффект проявляется в чистом виде. что позволяет дать его оценку. По экспериментальным данным величины эффекта в различных организмах варьируют в широких пределах от 1,011 до 1,023 (табл. 1). Кроме того, поскольку суммарный карбоксильный углерод глутаминовой кислоты включает изотопнолегкую (а) и изотопнотяжелую (ү) группу, то вследствие взаиморазбавления изотопный состав суммарного карбоксильного углерода глутаминовой кислоты должен быть беднее по С13 изотопного состава аргинина, что и наблюдается во всех изученных случаях. Нетрудно оценить изотопное распределение и в других аминокислотах, генетически связанных с кетокислотами цикла Кребса (табл. 1).

Однако наряду с рассмотренными аминокислотами есть другие, которые не имеют непосредственного отношения к циклу Кребса. Это серин, глицин, аланин, ароматические аминокислоты и др. Для них также наблюдается обогащенность карбоксильных групп по С¹³ по сравнению с алкильными радикалами. Известные опыты Кальвина по ассимиляции углерода при фотосинтезе (⁶) показывают, что важной причиной неравномерного распределения изотонов при биоспитезе является сцецифичность

Таблица 2 Распределение метки в опытах Кальвина (6)

№ С-атома	Группа	Φ	ГK	Генсоза		
		5 сек.	15 сен.	5 сек.	15 сен.	Рибулоза 5 сек.
1 2 3 4 5 6	Карбоксил 2-углерод β-углерод	82 6 6	49 25 25	3 3 43 42 3 3	13 12 24 24 12 13	11 10 69 5 3

химических взаимодействий. Соединение меченой CO_2 с рибулезо-1,5-дифосфатом возможно лишь в определенном месте, поэтому метка, поступающая с ассимилируемой $C^{14}O_2$, оказывается сконцентрированной в карбоксильной группе $\Phi\Gamma K$, а затем в третьем и четвертом атомах глюкозы соответственно (табл. 2). После прекращения введения $C^{14}O_2$, при многократном повторении циклов, транскетолазные реакции приводят к рандомизации метки в соединениях.

В процессе ассимиляции атмосферной CO_2 при фотосинтезе из-за различия содержания C_{13} в углекислоте и организме, как и в цикле Кребса, должен наблюдаться исевдоизотопный эффект. В естественных условиях рандомизации изотопа C^{13} не происходит, поскольку организм, являясь открытой системой, непрерывно ассимилирует экзогенный углерод. В силу этого сохраняются изотопные различия. Ими объясняется экспериментально найденное обогащение по C^{13} карбоксильных групп серина, глицина, аланина и др. (табл. 1). Действительно, если проследить за судьбой обогащенных по C^{13} карбоксильных атомов углерода $\mathrm{\Phi}\Gamma\mathrm{K}$, то можно убедиться, что они попадают в карбоксильную группу пирувата в гликолитических реакциях, а затем в указанные аминокислоты. Следовательно, в результате существования стереоспецифичных ферментов и практической необратимости биохимических превращений вопрос о термодинамическом характере внутримолекулярного распределения изотопов в биохимических компонентах не возникает.

Подтверждением того, что рассматриваемые изотопные различия не являются истинными физико-химическими изотопными эффектами, являются опыты по гетеротрофному выращиванию фотосинтезирующих организмов, в которых источником питания являлась исключительно глюкоза (¹). В отсутствие ассимиляции СО₂ изотопные эффекты между карбоксильными группами и декарбоксилированным остатком всех изученных аминокислот исчезали. С этих позиций легко объяснить вызывавший недоумение факт, что на фоне общей картины распределения изотопов в аминокислотах выделялся лейции, у которого карбоксильная группа оказалась значительно легче карбоксильного углерода других аминокислот. Дело в том, что в соответствии с изученной цепочкой превращений карбоксильная группа лейцина происходит от изотопнолегкого атома углерода алкильного радикала.

Таким образом, внутримолекулярная изотопная неоднородность, обнаруженная в аминокислотах и углеводах, является следствием стереоспецифичности взаимодействия ферментов с субстратом и различия изотопного состава ассимилируемой CO_2 и организма. Изотопные различия индивидуальных соединений определяются конкретными путями их биосинтеза.

Научно-исследовательский геологоразведочный нефтяной институт Москва Поступило 17 VIII 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ P. H. Abelson, T. C. Hoering, Proc. Nat. Acad. Sci. U.S.A., 47, 623 (1961).
² H. C. Wood, C. H. Werkmann et al., J. Biol. Chem., 139, 483 (1941).
³ A. G. Ogston, Nature, 162, 963 (1948).
⁴ C. 3. Рогинский, С. Э. Шноль, Изотопы в биохимии, Изд. АН СССР, 1963, стр. 178.
⁵ E. T. Degens, Biogeochemistry of Stable Carbon Isotopes, In: Organic Geochemistry Methods and Results, 1963, р. 304.
⁶ М. Кальвин, Углеродный цикл при фотосинтезе. Сборн. Современные проблемы биохимии, ИЛ. 1957, стр. 446.