УДК 517.5

MATEMATUKA

А. М. СЕДЛЕЦКИЙ

ПЕРИОДИЧЕСКОЕ В СРЕДНЕМ ПРОДОЛЖЕНИЕ НЕПРЕРЫВНЫХ ФУНКЦИЙ С СОХРАНЕНИЕМ ГЛАДКОСТИ

(Представлено академиком С. М. Никольским 24 І 1973)

Пусть
$$f \in C[-a, a]$$
 и удовлетворяет при $x = 0$ соотношению
$$\int f(x+t) \ d\sigma(t) = 0, \quad var \ \sigma < \infty, \quad \sigma = \text{const вне } (-a, a). \tag{1}$$

Периодическим в среднем (п.с.) продолжением f на правую полупрямую назовем функцию (сохраним для нее то же обозначение), которая цепрерывна при $x \ge -a$, удовлетворяет уравнению (1) при $x \ge 0$ и совпадает с исходной функцией на [-a,a]. Через $\omega(g,\delta;b,c)$ и $V_b{}^c(g)$ обозначаем соответственно модуль непрерывности и вариацию g на [b, c]. Пишем $\omega(g, \delta)$ и V(g), когда [b,c] = [-a,a].

T е орема 1. Пусть имеет место условие (1) при x=0, причем $\sigma(a) - \sigma(a-0) \neq 0$. Тогда f обладает n.c. продолжением на полупрямую

 $x \ge -a$. При этом:

1) $\omega(\hat{f}, \delta; -a, b) \leq c(b)\omega(f, \delta) \quad \forall b > a;$

2) если $V(f) < \infty$, то и $V_{-a}{}^b(f) < \infty$ для $\forall b > a$, причем $V_{-a}{}^b(f) \le$ $\leq c_1(b) V(f)$.

Пусть $\Lambda = \{\lambda_n\}_{n=0}^{\infty}$ — последовательность корней функции $L(z) = \int \exp{(izt)} \, d\sigma(t)$, m_n — кратность λ_n . Рассмотрим систему

 $E_{\Lambda} = \{\{x^{h-1}e^{i\lambda_nx}\}_{n=0}^{m_n}\}_{n=0}^{\infty}$; через $C_{\Lambda}[b,c]$ обозначаем замыкание линейной оболочки E_{Λ} в C[b,c]. Дефектом E_{Λ} в C[-a,a] назовем наименьшее целое число $d=d(E_{\Lambda})$, обладающее свойством: система $E_{\Lambda}\cup\{e^{i\mu_{n}x}\}_{n=1}^{d}$ полна в $C[-a, a], \mu_n \notin \Lambda, n = 1, 2, \ldots, d$. Не оговаривая особо, будем считать, что $\sigma \neq \text{const}$ в сколь угодно малой окрестности точки t=-a.

Лемма 1. Eсли $\sigma(a) - \sigma(a-0) \neq 0$, то $d(E_{\Lambda}) = 1$. Условие леммы влечет (¹) неравенство $|L(z)| \geq m > 0$ на некоторой прямой Im z = H. Hусть $d(E_{\Lambda}) > 1$. Тогда система e^{a} U $e^{i\mu x}$, $\mu \notin \Lambda$, неполна в $C[-a,a];\ \exists s(t),\ V_{-a}{}^a(s)<\infty$ так, что $G(z)=\int e^{izt}ds(t)$ обращается в нуль в точках $\Lambda \cup \mu$. Значит, $G(z) = (z - \mu)L(z)E(z)$. Ясно, что $h_{\sigma}(\varphi) \leq a |\sin \varphi|$, и, так как (2) $h_{L}(\varphi) = a |\sin \varphi|$, то $E(z) \in [1, 0]$. Отсюда $\sup E(z) > 0$ на прямой $\operatorname{Im} z = H$, значит, $\sup |G(z)| = \infty$ на этой прямой, что противоречит тому, что G есть преобразование Φ урье — Стильтьеса.

При дополнительных предположениях относительно поведения о в ок-

рестности t = -a лемма 1 была доказана в (3).

Лемма 2. $\{d(E_{\Lambda})=1\} \cap \{(1) \text{ npu } x=0\} \Rightarrow f \in C_{\Lambda}[-a,a].$ $d(E_{\Lambda})=1 \Rightarrow \operatorname{codim} C_{\Lambda}[-a,a]=1.$

Значит, \forall линейный функционал, аннулирующий E_{Λ} , представляется функцией $k\sigma(t)$. Благодаря (1) он аннулирует f. По теореме Хана — Бана- $\mathbf{x}a \ f \in C_{\Lambda}[-a, a].$

Доказательство теоремы 1. Существование п.с. продолжения следует из (1) и лемм 1, 2. Утверждения 1), 2) достаточно доказать для некоторого b>a. Положим $b=a+\alpha$, где $\alpha>0$ выбрано из условия

 $V_{a-\alpha}^{a-0}(\sigma) \le c_0 < 1$ (считаем, что $\sigma(a) - \sigma(a-0) = 1$).

1) Благодаря свойству модуля непрерывности $\omega(g, \delta; a, c) \le \omega(g, \delta; a, b) + \omega(g, \delta; b, c), a < b < c,$ достаточно показать, что $\omega(f, \delta; a, b) \le c_3(b) \omega(f, \delta)$. При фиксированном $\delta = (0, \alpha]$ рассмотрим $\omega(f, \delta; a, b) = \sup|f(x_2) - f(x_1)|$, где \sup берется по $\sup x_1, x_2 = [a, b], |x_2 - x_1| \le \delta$. Эта верхняя грань достигается при некоторых x_1, x_2 . Считаем, что $a \le x_1 < x_2 \le a + \alpha, x_1 = a + b, h \ge 0, x_2 = x_1 + \delta$. В соотношении $0 = \int \{f(t+h+\delta) - f(t+h)\} d\sigma(t)$, получающемся из (1), отделим скачок σ в t = a, а оставшийся интеграл разобьем на 2: от (-a) до $(a-h-\delta)$ и от $(a-h-\delta)$ до (a-0). Получим

$$\omega(f, \delta; a, b) = |f(x_2) - f(x_1)| \le c_0 \omega(f, \delta; a, b) + V_{-a}^{a-0}(\sigma) \omega(f, \delta).$$

Так как $c_0 < 1$, то отсюда получается требуемое, причем

$$c_3(b) \leq (1-c_0)^{-1} V_{-a}^{a-0}(\sigma).$$

2) І шаг. Покажем, что $V_a{}^b(f)<\infty\Rightarrow V_a{}^b(f)\leqslant c_3(b)\,V(f)$. Положим в (1) $x=h\in[0,\alpha]$:

$$f(a+h) = -\int_{-a}^{a-h} f(t+h) \ d\sigma(t) - \int_{a-h}^{a-0} f(t+h) \ d\sigma(t). \tag{2}$$

По известному свойству свертки $V(\alpha*d\beta) \leq V(\alpha) V(\beta)$ из (2) вытекает неравенство $V_a{}^b(f) \leq c_0 V_a{}^b(f) + V_{-a}^{a-0}(\sigma) V(f)$, дающее требуемое.

II шаг. Предположим, что $\sigma = \text{const}$ на $[a-\varepsilon,a]$ для некоторого $\varepsilon > 0$. Тогда в (2) при $h=\varepsilon$ второй интеграл исчезает и утверждение 2) теоремы

получается из упоминавшегося свойства $V(\alpha * d\beta) \leq V(\alpha) V(\beta)$.

III шаг. Пусть имеет место общий случай. Для $\varepsilon > 0$ положим $\sigma_{\varepsilon}(t) = \sigma(t)$ при $t \in [-a, a - \varepsilon]$ и $t = a, \sigma_{\varepsilon}(t) = \sigma(a - 0)$ при $t \in (a - \varepsilon, a)$. Обозначим через $\{f_{\varepsilon}\}$ семейство непрерывных на [-a, a] функций со свойствами: 1) $f_{\varepsilon} \to f$ по норме C[-a, a] при $\varepsilon \to 0$, 2) $V(f_{\varepsilon}) \leq H < \infty$, 3) $\omega(f_{\varepsilon}, \delta) \leq H_1\omega(f, \delta)$, 4) $\int f_{\varepsilon}(t) d\sigma_{\varepsilon}(t) = 0$. Можно показать, что достаточно положить $f_{\varepsilon} = f + r(\varepsilon)$, где

$$r(\varepsilon) = \left(L(0) - \int_{a-\varepsilon+0}^{a-0} d\sigma\right)^{-1} \int_{a-\varepsilon+0}^{a-0} f(t) d\sigma(t),$$

если считать (не ограничивая общности), что $L(0) \neq 0$.

Функция σ_{ϵ} имеет (единичный) скачок в t=a. Значит, f_{ϵ} обладает п.с. продолжением на правую полупрямую. По II шагу $V_a{}^b(f)<\infty$, а по I шагу $\sup V_{-a}{}^b(f)<\infty$. Из утверждения 1) теоремы, третьего свойства семейства $\{f_{\epsilon}\}$ и оценки для c(b) следует, что семейство $\{f_{\epsilon}\}$ равностепенно непрерывно на [-a,b]. Наконец, из (¹) следует равномерная ограниченность этого семейства. По теореме Арпела некоторая последовательность $\{f_{\epsilon_i}(x)\}$ сходится по норме C[-a,b] при $\epsilon_i\to 0$. Предельная функция $F\in C[-a,b]$, F=f на [-a,a] и по первой теореме Хелли $V_{-a}{}^b(F)\leqslant c_1(b)\,V(f)$. Убедимся, что F=f. Так как $\{f_{\epsilon_i}\}$ сходится на [-a,b] равномерно, $\sigma_{\epsilon_i}\to \sigma$ в каждой точке [-a,a] и $\sup V(\sigma_{\epsilon})<\infty$, то по обобщению первой теоремы Хелли ((¹), стр. 290) можно перейти к пределу при $\epsilon\to 0$ в уравнении $\{f_{\epsilon}(t+x)\}$ о $\{\sigma_{\epsilon}(t)\}$ о при фиксированном $\{f_{\epsilon}(t)\}$. Получим, что для таких $\{f_{\epsilon}(t)\}$ обранстворяет уравнению (1). По теореме единственности для п.с. функций $\{f_{\epsilon}(t)\}$ $\{f_{\epsilon}(t)\}$ о Теорема 1 доказана.

При некоторых дополнительных ограничениях на $\sigma(t)$ та часть теоремы 1, которая получается после удаления утверждений 1) и 2), была установлена в $\binom{7}{2}$.

Применим теорему 1 к исследованию негармонического ряда Фурье по

системе E_{Λ}

$$f(x) \propto \sum_{n=0}^{\infty} P_n(x) e^{i\lambda_n x} = i \sum_{n=0}^{\infty} \operatorname{Res}_{z=\lambda_n} \frac{e^{izx}}{L(z)} \int_{-a}^{a} d\sigma(u) \int_{0}^{u} f(v) e^{iz(u-v)} dv.$$
(3)

Теорема 2. Пусть $f \in C[-a, a]$, имеет место соотношение (1) при x = 0, а σ имеет скачки в точках $t = \mp a$. Предположим, что выполняется одно из условий; а) $\omega(f, \delta) \ln \delta \to 0$ при $\delta \to 0$, δ) var $f < \infty$. Тогда:

одно из условий: а) $\omega(f,\delta)$ $\ln \delta \to 0$ при $\delta \to 0$, б) $\operatorname{var} f < \infty$. Тогда: 1) $\exists \{r_k\} \uparrow \infty$, $r_{k+1} - r_k = O(1)$ так, что подпоследовательность $S_{r_k}(f,x) = \sum_{|h| \le r_k} P_n(x) e^{i\lambda_n x}$ частичных сумм ряда (3) сходится равномерно

на каждом отрезке, причем на $[-a, a] - \kappa$ функции f,

2) если
$$\inf_{n \neq m} |\lambda_n - \lambda_m| > 0$$
, то ряд $\sum_{n=0}^{\infty} P_n(x) e^{i\lambda_n x}$ сходится равномерно

на каждом отрезке, причем на $[-a, a] - \kappa$ функции f.

Доказательство опирается на: 1) теорему 1, гарантирующую существование для f п.с. продолжения на всю ось (это значит, что (1) выполняется для $\forall x \in (-\infty, \infty)$) с сохранением модуля непрерывности или ограниченности вариации, 2) теорему равносходимости (1) ряда (3) и обычного ряда Фурье, 3) признак Дини — Липшица или Дирихле — Жордана (в зависимости от условия а) или б)) для обычных рядов Фурье (близкий прием применялся в (5), где изучались ряды (3) для $f \in L^p$).

Теорема 2 обобщает известные признаки Дини — Липшица и Дирихле — Жордана. Часть теоремы 2, соответствующая условию б), в более слабой форме (утверждается сходимость S_τ в C[-a,a] к f) доказана в $[^a]$.

Московский энергетический институт

Поступило 17 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. М. Седлецкий, Изв. АН СССР, сер. матем., 14, № 6, 1391 (1970). ² А. Ф. Леонтьев, Изв. АН СССР, сер. матем., 29, № 2, 269 (1965). ³ Ю. И. Любич, Изв. высш. учебн. завед., матем., 4, 94 (1959). ⁴ Г. Е. Шилов, Математический анализ, спец. курс, М., 1960. ⁵ А. М. Седлецкий, Матем. заметки, 12, № 1, 37 (1972). ⁶ В. А. Молоденков, А. П. Хромов, Дифф. уравнения и вычисл. матем., Саратов, 1, 17 (1972). ⁷ Ю. И. Любич, Матем. сборн., 38, № 2, 183 (1956).