УДК 541.8+541.49

ХИМИЯ

М. А. ТРОФИМОВ, П. К. ЛЕОНТЬЕВСКАЯ, А. А. ПЕНДИН, академик Б. П. НИКОЛЬСКИЙ

ЖИДКИЕ ЭЛЕКТРОНО-ИОНООБМЕННИКИ НА ОСНОВЕ АЛКИЛПРОИЗВОДНЫХ ФЕРРОЦЕНА

Мидкие электроно-ионообменники (редокситы) в восстановленной форме были получены растворением алкилпроизводного ферроцена в растворителях: октиловом, нониловом и дециловом спиртах и трибутилфосфате (1). Окисленная форма редоксита может быть получена двумя способами. Первый из них заключается в гетерогенном окислении восстановленной формы редоксита водными растворами окислителей ($K_2Cr_2O_7$, $Fe(ClO_3)$). Второй — в растворении в органическом растворителе перхлоратных со-

лей производных феррицения.

Для получения перхлоратных солей алкилироизводных феррицения с радикалами, содержащими от 4 до 16 атомов углерода, соответствующие алкилироизводные ферроцена эмульгировались в 0.5~M водном растворе HClO₄, который содержит перхлорат трехвалентного железа. Количественное окисление производного ферроцена и выделение в твердую фазу перхлоратов феррицения происходило за 2-3 часа. С целью ускорения окисления допустимо добавление в реакционную смесь гептана. Описанным способом выделены кристаллические перхлораты диэтил-, монооктил-, диизоамил- и диизооктилферрицения. Состав солей был подтвержден спектрофотометрическими и редоксметрическими определениями. Полученные соли хорошо растворимы в ацетоне, эфире, предельных спиртах, нитробензоле, трибутилфосфате. Растворимость в воде существенно зависит от числа углеродных атомов в боковой цепи замещенного ядра. Так, растворимость $(C_2H_5)_2$ FecClO₄ в 0,5 M HClO₄ порядка 0,01 мол/л. Перхлорат диизооктилферрицения настолько мало растворим в воде, что определить спектрофотометрически величину растворимости этой соли не удалось.

Характерной особенностью коэффициентов распределения (D = C(o) / C(B)) солей RFecClO₄ (R - алкильный радикал) в системе органический растворитель — водные растворы 3N HClO₄ является их рост по мере увеличения числа атомов углерода в алкильном радикале (рис. 1). Поэтому при получении жидких редокситов нами использовались алкилферроцены, пмеющие 8 и более атомов углерода в алкильном радикале.

Максимальная величина окислительно-восстановительной емкости разработанных электроно-ионообменных материалов определяется растворимостью солей производных феррицения в органической фазе. Для редоксита на основе монооктилферроцена и октилового спирта емкость составляет ~1 мг-экв/г. Существенно, что изменение емкости редоксита при проведении последовательных циклов окисления — восстановления происходит исключительно в результате вымывания RFecClO₄ из органической фазы в водную. Емкость жидкого редоксита на основе диизооктилферроцена и органических спиртов при равенстве объемов обеих фаз остается практически постоянной с точностью 5% при проведении более 10 циклов окисления-восстановления.

Окислительные потенциалы полученных редокситов (окислительные потенциалы гетерогенной системы редоксит — раствор) сложным образом зависят от состава водной фазы. Последнее связано с тем, что окислительно-восстановительные процессы в системе сопряжены с процессами ионно-

го обмена и комплексообразования ферриценильных ядер с анионами фонового электролита. В частности, экспериментальные зависимости формальных окислительных потенциалов (²) от средней активности хлорной кислоты в водной фазе (рис. 2) могут быть объяснены образованием в органическом растворителе комплексных частиц состава [RFecClO₄] и [RFec(ClO₄)₂].

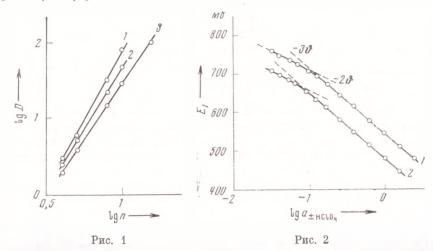


Рис. 1. Зависимость логарифма коэффициента распределения (D) алкилферрицениев в системе органический растворитель — водный раствор $3\ N\ HClO_4$ от логарифма числа углеродных атомов (n) в радикалах алкилировзводного ферроцена. 1 — октиловый спирт, 2 — нониловый спирт, 3 — дециловый спирт

Рис. 2. Зависимость э.д.с. гальванического элемента (E_I) от логарифма средней активности хлорной кислоты в водной фазе для жидких редокситов на основе диизооктилферроцена — перхлората диизооктилферрицения и октилового спирта (I) и ТБФ (2) $(C_{\rm RFec}=C_{\rm RFec}=1\cdot 10^{-3}\ {\rm мол/л})$

Определение окислительных потенциалов проводилось путем измерения э.д.с. гальванических элементов

$$Pt \mid RFec^{+}(C_{1}); \quad RFec(C_{2}); \quad HClO_{4}(C_{3}) \mid HClO_{4}(C_{4}) \mid Pt(H_{2})^{\bullet}. \tag{I}$$

При равновесии выражение для потенциала индифферентного электрода в органической фазе имеет вид

$$\varphi = \varphi^0 + \vartheta \lg \frac{a_{RFec^+(o)}}{a_{RFec(o)}}, \tag{1}$$

где ϕ^0 — стандартный окислительный потенциал системы в органическом растворителе, находящейся в равновесии с водным раствором данного состава, $a_{
m RFec}$; $a_{
m RFec}$ — активности алкилферроцена и алкилферрицения.

$$\vartheta=2,3\frac{RT}{F}\approx59$$
 мв (при 25°).

Поскольку в условиях окислительно-восстановительного равновесия электрохимические потенциалы ионов водорода в органической и в водной фазах равны, для потенциала водородного электрода можно записать выражение

$$\varphi = \varphi^{0'} + \vartheta \lg a_{H^*(0)}, \tag{2}$$

здесь ϕ° — стандартный потенциал водородного электрода в органической фазе.

^{*} В качестве водородного электрода использовался стеклянный электрод с водородной функцией и известным значением стандартного потенциала.

$$E_I = (\varphi^0 - \varphi^0) + \vartheta \lg \frac{a_{RFec^*(0)}}{a_{RFec(0)} a_{H^*(0)}}.$$
 (3)

Учитывая возможное (³) комплексообразование ферриценильного ядра с перхлорат-анионом по первой и второй ступени, уравнение (3) преобразовываем к виду

$$E_{I} = \varphi^{0} - \varphi^{0'} + \vartheta \lg \frac{C_{\text{RFec}^{+}(0)}^{0}}{C_{\text{RFec}(0)}} - \vartheta \lg \left[\frac{y_{\text{RFec}^{+}(0)}}{y_{\text{RFec}^{+}(0)}} a_{\text{H}^{+}(0)} + K_{1} \frac{y_{\text{RFec}^{+}(0)}}{y_{\text{RFec}^{+}(0)}} a_{\text{ClO}_{4}^{-}(0)} a_{\text{H}^{+}(0)} + K_{1} K_{2} \frac{y_{\text{RFec}^{+}(0)}}{y_{\text{RFec}^{+}(\text{ClO}_{4})_{2}^{-}(0)}} a_{\text{ClO}_{4}^{-}(0)} a_{\text{H}^{+}(0)} \right], \tag{4}$$

где $C^0_{\mathrm{RFec}^*(\mathrm{o})}$ — суммарная концентрация ферриценильных частиц в фазе редоксита; K_1 и K_2 — термодинамические константы образования комплексов [RFecClO₄] и [RFec(ClO₄)₂]⁻; y_{RFec} ; y_{RFec} ; y_{RFec} ; y_{RFec} — концентрационные коэффициенты активности соответствующих частиц в органической фазе.

Выбирая для хлорной кислоты одно стандартное состояние как в случае органической фазы, так и водной, записываем равенство

$$a_{\text{ClO}_{\bullet}^{-}(\circ)} = a_{\pm \text{HClO}_{\bullet}(B)} / a_{\text{H}^{+}(\circ)}; \tag{5}$$

здесь $a_{\pm \text{HClO}_4(B)}$ — средняя активность хлорной кислоты в водной фазе. С учетом (5) уравнение (4) примет вид

$$E_{I} = \varphi^{0} + \vartheta \lg \frac{C_{RFec^{+}(0)}}{C_{RFec^{+}(0)}} - \vartheta \lg \left[\frac{y_{RFec^{+}(0)}}{y_{RFec^{+}(0)}} a_{H^{+}(0)} + \frac{y_{RFec^{+}(0)}}{y_{RFec^{+}(0)}} a_{\pm HClO_{4}(B)} + K_{1}K_{2} \frac{y_{RFec^{+}(0)} a_{\pm HClO_{4}(B)}}{y_{RFec^{+}(0)} a_{\pm HClO_{4}(B)}} \right].$$

$$(6)$$

Анализируя полученное выражение, можно показать, что конкретный вид зависимости E_I от логарифма средней активности хлорной кислоты в водном растворе будет определяться соотношением концентраций ферриценильных ядер и хлорной кислоты в органической фазе, а также величиной констант комплексообразования.

При условии, что в органической фазе RFecClO₄ достаточно диссоциирован и $C_{\text{RFecCl}_4(o)} \gg C_{\text{HClO}_4(o)}$ (a), активность ClO₄—аниона в редоксите является величиной постоянной * и, следовательно:

$$a_{\pm \text{HClO}_{4(B)}} = a_{\text{H}^{+}(0)} a_{\text{ClO}_{4}^{-}(0)} = a_{\text{H}^{+}(0)} K,$$
 (7)

 $a_{\mathrm{H}^{+}(0)}=a_{\pm\mathrm{HClO}_{6}(\mathrm{B})}/K$,

где $K=a_{{\rm ClO}_4^-({\rm o})}$. Тогда величина $dE_I/d\lg a_{\pm {\rm HClO}_4({\rm B})}$ постоянна во всем интервале изменения концентрации хлорной кислоты в водной фазе при условии (а) и равна -2ϑ . Определение комплексных форм существования ферриценильных ядер в этом случае невозможно. Если $C_{{\rm HClO}_4({\rm o})}\gg C_{{\rm RFecClO}_4({\rm o})}$ (б), то допустимо представление о том, что

$$a_{\mathrm{H}} = a_{\mathrm{ClO}_{4}} = a_{\pm \mathrm{HClO}_{4}}. \tag{8}$$

Из уравнений (6) и (8) следует, что условию доминирования RFec⁺, [RFecClO₄] или [RFec(ClO₄)₂] в фазе редоксита будут соответствовать значения $dE_I/d\lg a_{\pm \text{HClO}_4(B)}$, равные $-\vartheta$, -2ϑ , -3ϑ соответственно. На экспериментальных зависимостях $E_I-\lg a_{\pm \text{HClO}_4(B)}$ наблюдаются линейные участки с угловыми коэффициентами -2ϑ в интервале концентраций

^{*} Этот случай аналогичен случаю твердых ионообменников, когда концентрация необменносорбированного электролита пренебрежимо мала.

	(C ₆ H ₁₇) ₂ Fec				45.77	G TI TI -
	в ТБФ	в октиловом спирте	в нониловом спирте	в дециловом спирте	(С₃Н₁1)₃Fес в дециловом спирте	С _в Н ₁₇ Fес в дециловом спирте
ϕ_{Φ}^0 , мв	470±3	54 5±3	560±3	570±3	565±3	565±3

 ${
m HClO_4(B)}\sim 0.1-0.4$ мол/л (${
m lg}~a_{\pm {
m HClO_4(B)}}\sim {
m or}~-1.4$ до -0.8) и -3ϑ при $C_{{
m HClO_4(B)}}\sim {
m or}~0.5$ до 3 мол/л (${
m lg}~a_{\pm {
m HClO_4}}\sim {
m or}~-0.6$ до 0.3). Полученные результаты подтверждают представление о том, что образуются ассоциаты [RFecClO₄] и [RFec(ClO₄)₂] — не только в водной (3), но и в органической фазе.

В табл. 1 приводятся значения формальных окислительных потенциалов исследованных редокситов при $a_{\pm \text{HClO}_4(B)} = 1$, отнесенные к стандартному водородному электроду. Из приведенных данных видно, что величина потенциала редоксита почти не зависит от числа углеродных атомов в алкильном радикале и уменьшается при переходе от спиртовых растворов к $TE\Phi$.

В заключение мы благодарны Т. П. Вишняковой п Т. А. Соколинской за предоставленные алкилферроцены.

Ленинградский государственный университет им. А. А. Жданова

Поступило 12 IV 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Б. П. Никольский, П. К. Леонтьевская и др., Авт. заявка № 1629446/ /23-26, 1971. ² Д. Батлер, Ионные равновесия в растворах, 1973. ³ Т. Н. Львова, А. А. Пендин, Б. П. Никольский, ДАН, 176, № 3, 586 (1967).