УДК 551.863(675.1)

ГЕОЛОГИЯ

В. В. ЛАВРОВ, Л. С. ТЕПЛОВА, Ю. Н. БОРИН

ПАЛЕОГЕОГРАФИЧЕСКАЯ ОБСТАНОВКА НАКОПЛЕНИЯ МЕЛОВЫХ КРАСНОЦВЕТОВ ФЕРГАНЫ ПО ГЕОХИМИЧЕСКИМ ПОКАЗАТЕЛЯМ

(Представлено академиком С. В. Колесником 12 І 1973)

В Ферганской впадине Тянь-Шаня широко распространена нефтегазоносная красноцветная чангетская серия (ч.с.) мелового возраста (⁴), вхопящая в непрерывный разрез мезокайнозоя впадины. Подстилается ч.с. континентальной верхней юрой, а перекрыта нижнетуронской устричной или экзогировой свитой (⁶), отложенной в фазу ингрессии верхнемелового моря. Сложена ч.с. палеонтологически крайне слабо охарактеризованными терригенными полимиктовыми карбонатными красноцветами. Красноцветы такого типа, в разных его вариантах, характерны для общирных территорий Средней и Центральной Азии (⁸). При общепринятом представлении о накоплении ч.с. в существенно аридном климате, одни считают эти красноцветы чисто континентальными озерно-аллювиальными осадками (⁴, ⁵, ⁸, ⁹), другие же рассматривают их в целом как отложения крупного водного бассейна (¹), который был в широком смысле слова морским заливом (²).

Новые материалы к генезису ч.с. дает рассмотрение содержаний малых элементов в породах серии, сравнительно с теми же данными по достоверно морской устричной свите. Систематическое опробование проведено в стратотипическом для серии районе западных предгорий Ферганского хребта, где ч.с. достигает мощности 1600 м. В табл. 1 приведены результаты геохимического изучения типичных красноцветных пород средней части разреза (средняя чангетская свита Л. Б. Рухина) и пород регионально распространенного «голубого горизонта» (до 40 м), залегающего среди

красноцветов в нижней трети разреза ч.с.

Приближенно-количественные определения элементов проведены в спектральной лаборатории, под руководством одного из авторов. Литолого-петрографическая однотипность образцов, представляющих собою терригенно-карбонатные накопления, позволила получить сопоставимые спектроаналитические результаты. Определения выполнены на кварцевом спектрографе ИСП-30. Возбуждение спектра — в дуге переменного тока, при испарении пробы из кратера угольного электрода, с разгопкой по фракциям. Регистрация спектров произведена на кинопленке МЗ-3. Оценка содержаний элементов выполнялась путем визуального фотометрирования ступенчато-ослабленых спектров (ослаблены на 3 порядка). Вследствие близости спектроаналитических характеристик Sr и Ва, отношение их содержаний — величина более стабильная, чем отдельные концентрации, и мало зависит от состава пробы.

Из табл. 1 можно сделать следующие выводы, относящиеся к пониманию палеогеографических обстановок осадконакопления (иных возможных направлений интерпретации табл. 1 авторы здесь не касаются).

1. Уровни содержания малых элементов (кроме Sr в среднем для глин) в глинах и карбонатах ч.с. выше, чем в аналогичных породах устричной свиты. Это же относится к значениям Σ ; они максимальны для глин голубого горизонта (1140 г/т), меньше для красных глин ч.с. (915) и минимальны для зеленых морских глин (665). Эти цифры, по-видимому, ука-

Содержание малых элементов в породах морской устричной свиты и красноцветной чангетской серии Восточной Ферганы

Элемент	Устричная свита		Чангетская серия			
	глины зеленые извест- ковистые (n = 19)	мергели и известняки (n = 16)	глины крас- ные извест- ковистые (n = 38)	карбонатные конкреции из глин (n = 6)	голубой глины корич- невые из- вестковистые (n = 33)	горизонт глины голу- бые извест- ковистые (n = 26)
Ba	210 100	120 94	460 100	270 100	280 100	333
Sr	240 100	<u>560</u> 100	170	400 100	200 100	320 100
Pb	95	<u>11</u> 68	97	<u>60</u> 50	140 94	15 100
Cu	11 100	94	20 100	7 100	30 100	120
V	50 100	<u>10</u> 56	45 100	24 100	60 100	80 100
Y	17	10 18	23 97	$\frac{22}{100}$	20 100	32 100
Zr	70 100	<u>20</u> 75	106	50 100	80 100	120
Cr	35 100	10 18	50 97	25 100	60	70 100
Ni	12 100	<u>10</u> 56	20 100	14 100	30 100	40 100
Со	10 90	0	90	67	100	100
Σ	665	752	915	882	910	1140

Примечание. Над чертой — содержание (г/т, или $10^{-4}\%$), под чертой — встречаемость (%).

зывают на более тесную связь чангетских водоемов с участками континентального химического выноса элементов, а также отчасти отражают и общую минерализацию иловых растворов, из которых происходила сорбция элементов осадком *.

2. В глинах голубого горизонта, нередко изобилующих тонко- и микровкрапленными сульфидами (преимущественно железа), особенно повышены содержания таких халькофильных элементов, как Си и Рв. Их количество, сравнительно с морскими глинами, в голубом горизонте ч.с. возрастает в 10—12 раз. В красных глинах, типичных для ч.с., концентрации халькофилов не происходит, однако в карбонатных конкрециях из этих глин накапливается Рв, которого здесь заметно больше, чем в морских известняках.

^{*} Все глины существенно гидрослюдистые, т. е. поглотительная их способность примерно одинакова.

3. Стронций-бариевое отношение, с известным основанием (3) принимаемое иногда за показатель мористости палеоводоемов (7,10), закономерно изменяется в ряду сравниваемых отложений. Для морских устричных глин оно максимально (Sr: Ba=1,1), для красноцветных глин ч.с. минимально (0,4), для глин голубого горизонта имеет промежуточное значение (0,7 и 0,9).

Такая же закономерность выдерживается и для карбонатных образований: в морских известняках Sr: Ba=4,6, а в карбонатах ч.с. 1,5. Таким образом, по всем типам пород в чангетских красноцветах стронций-бариевое отношение меньше, чем в морских осадках, более богатых стронцием.

4. Картина изменения содержаний всех элементов от глин к карбонатам в устричной свите и в ч.с. одна и та же. В известной мере это можно рассматривать как критерий стабильности спектроаналитических опреде-

лений и представительности геохимического опробования.

Таким образом, накопление красноцветов чангетской серии протекало, по-видимому, в неморской обстановке: по ряду геохимических показателей они явственно отличны от достоверно морских отложений, смежных по разрезу с ч.с. Пачки типичных для ч.с. красноцветных известковистых глин с доломитисто-кальцитовыми конкрециями, вероятно, отлагались в жестководных озерах. Породы же «голубого горизонта» можно считать отложенными в бассейнах с повышенной минерализацией, в илах которых шла редукция сульфатов и отчасти железа, с формированием осадков сульфидной геохимической фации, обогащенных медью и свинцом.

Всесоюзный научно-исследовательский геологический институт Ленинград

Поступило 26 XII 1972

цитированная литература

¹ М. Г. Барковская, Изв. Гос. геогр. общ., 70, в. 1 (1938). ² Н. Н. Верзилин, Тр. Ленингр. общ. естествонспыт., 71, в. 2 (1967). ³ Э. Д. Гольдбер, Геохимия моря, Сборн. Геохимия литогенеза, ИЛ (1963). ⁴ Д. И. Мушкетов, Тр. Геол. комит., нов. сер., в. 169 (1928). ⁵ Д. В. Наливкин, Очерк геологии Туркестана, Ташкент — М. (1927). ⁶ З. Н. Пояркова, Стратиграфия меловых отложений Южной Киргизии, Фрунзе (1969). ⁷ А. Н. Резников, Тр. Грозненск. нефт. инст. геол., № 26 (1962). ⁸ Л. Б. Рухин, Е. В. Рухина, Меловые отложения Ферганской котловины, Л. (1961). ⁹ А. В. Сочава, Красноцветы мела Средней Азии, Л., (1968). ¹⁰ З. А. Яночкина, Статистические методы изучения пестроцветов, М. (1966).