УДК 517.512

MATEMATUKA

Дж. И. МАМЕДХАНОВ

НЕРАВЕНСТВА ТИПА С. М. НИКОЛЬСКОГО ДЛЯ МНОГОЧЛЕНОВ КОМПЛЕКСНОГО ПЕРЕМЕННОГО НА КРИВЫХ

(Представлено академиком С. М. Никольским 11 V 1973)

Под неравенствами типа С. М. Никольского мы, как обычно (см., например, (2)-(3)), будем понимать неравенства между различными нормами одной и той же функции на заданных множествах.

Отметим, что многочисленные исследования таких неравенств проводи-

лись или на всей вещественной оси, или на ее конечном отрезке *.

В этой работе нами получен ряд общих и точных в смысле порядка неравенств указанного типа для многочленов комплексного переменного

вдоль спрямляемых кривых Жордана.

Пусть Γ — замкнутая или разомкнутая спрямляемая кривая Жордана, $l(\Gamma)$ — длина кривой Γ ; функция $w = \varphi(z)$ отображает внешность кривой Γ плоскости z на внешность γ , γ : |w| = 1, плоскости w, так что $\varphi(\infty) = \infty$; Γ_R , R > 1, — линия уровня кривой Γ , соответствующая окружности |w| = R; d(z, x) — функция точки $z \in \Gamma$, определяющая расстояние этой точки до кривой Γ_{1+x} , x > 0 **. Обозначим через $\mathscr P$ совокупность всех алгебраических многочленов степени $\leqslant n$ и введем в рассмотрение две нормы:

$$||P_n||_{L_p(\Gamma)} = \left(\int_{\Gamma} |P_n(z)|^p |dz| \right)^{1/p}, \quad p > 0; \tag{1}$$

$$||P_n||_{L_p(\Gamma)}^* = \left(\frac{1}{l(\Gamma)} \int_{\Gamma} |P_n(z)|^p |dz|\right)^{1/p}, \quad p > 0.$$
 (2)

Отметим, что в случае, когда кривая Γ разомкнутая, интеграл берется по границе разрезанной вдоль Γ плоскости.

Нами доказана следующая

Теорема 1. Если $P_n(z)$ $\in \mathscr{P}$, Γ — произвольная спрямляемая кривая и p>0, τo

$$\max_{z \in \Gamma_R} |P_n(z)| \le \left(\frac{R^m}{2\pi}\right)^{2/p} [\delta(\Gamma)]^{1/p} ||P_n||_{L_p(\Gamma)}, \tag{3}$$

 $e\partial e \ m=n+1$,

$$\delta(\Gamma) = \sup_{z \in \Gamma_R} \frac{r}{|t-z|^2}.$$

В дальнейшем мы воспользуемся следующей леммой.

 Π емма 1. Если $\Gamma-$ произвольная спрямляемая кривая, то для $P_n(z)$ $\equiv \mathscr{P}$ имеем

$$||P_n||_{L_p(\Gamma_R)} \le R^{n+1/p} ||P_n||_{L_p(\Gamma)}, \quad p > 0,$$
 (4)

ш

$$||P_n||_{L_p(\Gamma_R)} \le R^n ||P_n||_{L_p(\Gamma)}, \quad p > 0.$$
 (5)

* В многомерном случае см., например, работы (1, 2, 4).

^{**} Более подробные сведения о функции d(z, x) имеются в работе (7).

Неравенство (4) получено в работе (5), а неравенство (5), которое в некотором смысле улучшает неравенство (4), доказано нами *. С помощью теоремы 1 и леммы 1 доказывается следующая

 Γ еорема 2. $\mathit{Ecлu}$ $\Gamma-\mathit{npoussonbhas}$ спрямляемая кривая и $0{<}\mathit{p}{\leqslant}$

 $\leq p' \leq \infty$, то для $P_n(z) \in \mathcal{P}$ имеем

$$||P_n||_{L_p'(\Gamma_R)} \leqslant R^{np/p'+1/p'} \qquad r \cdot \frac{R^m}{2\pi} \rangle^2 \delta(\Gamma) \qquad \Big||P_n||_{L_p(\Gamma)}$$

$$(6)$$

и

$$\|P_n\|_{L_{p'}(\Gamma_R)}^{\bullet} \leq R^{np/p'} \left[\left(\frac{R^m}{2\pi} \right)^2 l(\Gamma) \delta(\Gamma) \right]^{1/p - 1/p'} \|P_n\|_{L_p(\Gamma)}^{\bullet}, \tag{7}$$

где m и $\delta(\Gamma)$ определены, как и в теореме 1.

В теоремах 1 и 2 нормы вдоль линии уровня Γ_R оцениваются посредством другой нормы вдоль заданной кривой Γ . Подобные утверждения доказаны нами еще в случае, когда нормы, входящие в указанные неравенства, берутся вдоль одной и той же кривой.

Теорема 3. $\mathit{Ecлu}\ \Gamma - \mathit{npouseonbhas}\ \mathit{cnpsmnsemas}\ \mathit{кpueas}\ \mathit{u}\ 0{<}\mathit{p}{\leqslant}$

 $\leq p' \leq \infty$, то для $P_n(z) \in \mathcal{P}$ имеет место

$$||P_n||_{L_{p'}(\Gamma)} \leq \left(\frac{l}{2\pi}\right)^{2(1/p-1/p')} \left[\delta_n^{\bullet}(\Gamma)\right]^{1/p-1/p'} ||P_n||_{L_{p}(\Gamma)}, \tag{8}$$

где

$$\delta_{n^*}(\Gamma) = \sup_{z \in \Gamma_{1+1/n}} \int_{\Gamma} \frac{|dt|}{|t-z|^2}.$$

Из этой теоремы непосредственно вытекает следующее утверждение. Следствие 1. *При условиях теоремы* 3 *имеем*

$$||P_n||_{L_{p'(\Gamma)}} \leq \left(\frac{l^2}{2\pi}\right)^{\frac{1}{2}(p-1/p')} \left[\frac{1}{d(1/n)!}\right]^{\frac{1}{p-1/p'}} ||P_n||_{L_p(\Gamma)}, \tag{9}$$

где

$$d(1/n) = \inf_{z \in \Gamma} d(z, 1/n).$$

Введем в рассмотрение теперь следующие классы кривых.

Замкнутую спрямляемую кривую Γ , с отображающей функцией $\varphi(z)$, назовем кривой типа (S), если

$$0 < N_1 \le \left| \frac{\varphi(t) - \varphi(z)}{t - z} \right| \le N_2 < \infty,$$

и кривой типа (а), если

$$|\varphi(t)-\varphi(z)| \leq A|t-z|^{1/\alpha}, \quad 1 \leq \alpha \leq 2, \quad t \in \Gamma_{R}, \quad z \in \Gamma.$$

Наконед, замкнутую спрямляемую кривую Γ будем называть кривой типа (N), если она состоит из дуг, имеющих непрерывную кривизну, и угловых точек z_i , $i=1,\ 2,\ldots,\ k$, с внешними углами, равными $u_i\pi$, $0<<u_i\leqslant 2$, причем

 $N = \max_{1 \leq i \leq k} (1, u_i).$

Очевидно, что класс кривых типа (α) при всех α , $1 \le \alpha \le 2$, шире класса кривых типа (S), а последний в свою очередь содержит в себе класс спрямляемых аналитических кривых Жордана. Поэтому следующее утверждение, вытекающее из теоремы 3, является обобщением и улучшением, в смысле постоянного множителя, известного неравенства Севелла (6).

^{*} В случае, когда Γ есть окружность |z|=1, неравенство (5) в смысле порядка точнее, чем неравенство (4).

Следствие 2. Eсли $\Gamma \subset (\alpha)$, $P_n(z) \in \mathscr{P}$ и $0 , <math>\tau_0$

$$||P_n||_{L_{p'}(\Gamma)} \leqslant \left(\frac{l^2}{2\pi}\right)^{\frac{1}{p-1/p'}} \left(\frac{n}{A}\right)^{\frac{\alpha(1/p-1/p')}{p-1/p'}} ||P_n||_{L_p(\Gamma)}. \tag{10}$$

Отсюда вытекает

Следствие 3. Если Г: |z|=1, $P_n(z)$ $\in \mathcal{P}$ и 0 , то

$$||P_n||_{L_{p'}(\Gamma)} \le \left(\frac{2l^2}{3\pi}\right)^{1/p-1/p'} n^{1/p-1/p'} ||P_n||_{L_p(\Gamma)}. \tag{11}$$

Заметим, что непосредственным вычислением из теоремы 3 можно для алгебраических многочленов получить неравенства типа С. М. Никольского на прямолинейном отрезке, доказанные ранее в работах $\binom{2}{3}$.

Используя некоторые свойства кривых класса (N) из теоремы 3, можно

получить

Следствие 4. Если
$$\Gamma \subset (N)$$
, $P_n(z) \in \mathcal{P}$ и $0 , то
$$\|P_n\|_{L_p'(\Gamma)} \le (An)^{N(1/p-1/p')} \|P_n\|_{L_p(\Gamma)}, \tag{12}$$$

 $e\partial e$ A-aбсолютная константа, зависящая лишь от свойства кривой Γ .

Следствие 5. Если Γ — произвольная спрямляемая кривая, содержащая точки возврата (т. е. угловые точки с внешним углом, равным 0 или 2π), и $P_n(z) \in \mathcal{P}$, то при 0 имеем

$$||P_n||_{L_p'(\Gamma)} \le (An)^{2(1/p-1/p')} ||P_n||_{L_p(\Gamma)},$$
 (13)

 $arepsilon \partial e \ A - a$ бсолютная константа, зависящая лишь от свойства $\Gamma.$

Отметим, что с помощью данных неравенств методом, приведенным в работе И. И. Ибрагимова (2), можно получить непосредственные аналоги теорем А. А. Конюшкова (8) на произвольных кривых, связывающие наилучшие приближения некоторых функций посредством многочленов, в различных интегральных метриках.

Институт математики и механики Академии наук АзербССР Баку Поступило 10 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. М. Никольский, Приближение функций многих переменных и теоремы вложения, М., 1969. ² И. И. Ибрагимов, Экстремальные свойства целых функций конечной степени, Баку, 1962. ³ А. Ф. Тиман, Теория приближения функций действительного переменного, М., 1960. ⁴ Д. М. Мамедханов, ДАН, 157, № 3, 526 (1964). ⁵ Е. Hille, G. Szegö, J. Tamarkin, Duke Math., 3, 729 (1937). ⁶ W. E. Sewell, Degree of Approximation by Polynomials in the Complex Domain, 1942. ¹ В. К. Дзядык, Третья летняя математическая школа, Киев, стр. 29. ⁶ А. А. Конюшков, Матем. сборн., 44 (86), № 1, 53 (1958).