УДК 517.11

МАТЕМАТИКА

Член-корреспондент АН СССР А. А. МАРКОВ

0 ЯЗЫКЕ \mathbf{A}_{\bullet}

В статье (1) был намечен способ построения конструктивной математической логики методом ступенчатой семантической системы, т. е. путем сооружения некоторой «башни» языков. Здесь описывается возможный «подвальный этаж» такой башни — некоторый язык A_0 .

В дальнейшем Λ означает пустое слово, \rightleftharpoons есть знак равенства по определению, 🗷 – знак графического равенства, ≢ – знак графического различия, НЧ означает «натуральное число», НА – «нормальный алго-

 Π и тероидами [Π д] называются слова вида (P), где P — непустое слово в однобуквенном алфавите а; переменными [Пн] называются слова вида (P), где P — непустое слово в однобуквенном алфавите c; а томами [Ам] называются Лди Пн. Вербоиды [Вд] определяются следующими двумя правилами построения:

Вд 1.
$$\Lambda$$
—Вд. Вд 2. $\frac{P$ —Вд, Q —Лд PQ —Вд.

Эти правила понимаются здесь так: Λ считается Вд; если P есть Вд, а $Q-\Pi_{\rm H}$, то PQ считается Вд. Аналогично понимаются в этой статье другие правила построения. Постоянные термы [ПТ] определяются следующими правилами построения:

ПТ 1.
$$\Lambda$$
-ПТ. ПТ 2. $\frac{P-\Pi T, Q-\Pi \pi}{PQ-\Pi T}$. ПТ 3. $\frac{P,Q-\Pi T}{P\{Q\}-\Pi T}$

Термы [Тм] определяются следующими правилами построения:

Tm 1.
$$\Lambda$$
-Tm. Tm 2. $\frac{P-\text{Tm}, Q-\text{Am}}{PQ-\text{Tm}}$. Tm 3. $\frac{P, Q-\text{Tm}}{P\{Q\}-\text{Tm}}$

Всякий непустой Bд единственным образом представляется в виде PQ, где $P - \mathrm{B}$ д, а $Q - \mathrm{J}$ д. Всякий непустой ПТ представляется в одном и только в одном из видов: PQ, где $P-\Pi T$, а $Q-\Pi T$; $P\{Q\}$, где P и $Q-\Pi T$. В обоих случаях указанное представление единственно. Всякий непустой Тм представляется в одном и только в одном из видов, PQ, где P-Тм, а Q – Aм; $P\{Q\}$, где P и Q – Тм. В обоих случаях указанное представление единственно.

Определим операцию подстановки Тм вместо Пнв Тм. Результат подстановки Тм T вместо Π н X в Тм U будет обозначаться

$$\mathfrak{F}_{\mathsf{L}}XU\Box T_{\mathsf{J}}.$$

Индуктивное определение состоит из трех пунктов § 1, § 2 и § 3: \mathfrak{F} 1. $\mathfrak{F}_{\mathbf{L}}X \wedge \Box T_{\mathbf{J}} \rightleftharpoons \Lambda$;

 $\mathfrak{F} \ 2. \ \mathfrak{F}_{\mathsf{L}} X U W \square T_{\mathsf{J}} \rightleftharpoons \ \ \left\{ \mathfrak{F}_{\mathsf{L}} X U \square T_{\mathsf{J}} W, \text{ если } X \not\equiv W, \\ \mathfrak{F}_{\mathsf{L}} X U \square T_{\mathsf{J}} T, \text{ если } X \not\equiv W; \\ \mathfrak{F}_{\mathsf{L}} X U \square T_{\mathsf{J}} + \mathfrak{F}_{\mathsf{L}} X U \square T_{\mathsf{J}} + \mathfrak{F}_{\mathsf{L}} X U \square T_{\mathsf{J}} \right\}; \\ \mathfrak{S} \text{десь } U \text{ и } V - \text{Tm}, W - \text{Am}. \\ \text{Результат истоля.}$

Результат подстановки Тм вместо Пн в Тм есть Тм.

Вд будут в дальнейшем применяться для кодирования слов в различных алфавитах. Это будет делаться следующим образом.

Пусть A — алфавит. Обозначим $v_{L}\xi_{J}$, где ξ — буква алфавита A, порядковый номер этой буквы в алфавите А. Определим алгорифм 🗓 следующими равенствами $\mathfrak{T}_{A}1$ и $\mathfrak{T}_{A}2$:

 $\mathfrak{T}_{A}1. \ \mathfrak{T}_{AL}\Lambda_{J} \Rightarrow \Lambda;$

 $\mathfrak{T}_{A}2. \ \mathfrak{T}_{AL}P\xi_{J} \rightleftharpoons \mathfrak{T}_{AL}P_{J}(a^{vL\xi_{J}}),$

где показатель при букве а означает ее νь ξл-кратное повторение. Здесь P — любое слово в алфавите A, ξ — любая буква этого алфавита. Мы будем называть $\mathfrak{T}_{AL}P_{f J}$ переводом слова (относительно алфавита А).

Перевод всякого слова P в алфавите A есть Bд, по которому слово P

может быть однозначно восстановлено.

Определим теперь алгорифм вычисления значения ПТ. Обозначая этот алгорифм через 33, положим:

 $\mathfrak{M}1. \ \mathfrak{M}_1\Lambda_1 \rightleftharpoons \Lambda$:

 \mathfrak{B} 2. $\mathfrak{B}_{\mathsf{L}}PL_{\mathsf{J}} \rightleftharpoons \mathfrak{B}_{\mathsf{L}}P_{\mathsf{J}}L;$ \mathfrak{M} 3. $\mathfrak{M}_{\mathsf{L}}P\{Q\}_{\mathsf{J}} \rightleftharpoons \mathfrak{M}_{\mathsf{L}}P_{\mathsf{J}}\mathfrak{T}_{a(\mathsf{J})\mathsf{L}}\mathfrak{M}_{\mathsf{L}}Q_{\mathsf{J}\mathsf{J}},$ где P и Q — любые ПТ, L — любой Лд. Результат применения алгорифма \mathfrak{B} к ПТ P мы будем называть значением ПТ P.

Значение всякого ПТ есть однозначно определенный Вд. Значение вся-

кого Вд есть этот самый Вд.

Будем называть сравнителями [Сл] знаки = и ≠.

Будем называть элементарными формулами [ЭФ] слова вида

 $(T \circ U)$,

где T и U- Тм, $\sigma-$ Сл.

Всякая $\Theta\Phi$ единственным образом представляется в виде $(T \circ U)$, где

T и U — Tм, а σ — Cл.

Будем называть юнкторами [Юр] знаки & и V; кванторами [Кр] — знаки V и Ξ; ограничителями [Ол] — знаки < и >; Юр и Кр будем называть логическими знаками [ЛЗ].

Будем называть вербоидными началами (концами) слова

Р Вд, являющиеся началами (концами) слова Р.

Определим формулы языка H_0 [Фл0] посредством следующих правил построения:

$$\Phi_{\pi}$$
 0.1. $\frac{A-\Im\Phi}{A-\Phi_{\pi}\,0}$;

$$Φ_{\pi}$$
 0.2. $\frac{A, B-Φ_{\pi}$ 0; λ-ΙΟρ}{λ $AB-Φ_{\pi}$ 0

Фл 0.3.
$$\frac{A - \Phi$$
л 0, \varkappa -Кр, $X - \Pi$ н, $U - T$ м, β -Ол $\varkappa U \beta X A - \Phi$ л 0

Всякая Фл0 представляется в одном и только в одном из видов: А, где $A - \partial \Phi$; λAB , где A и $B - \Phi$ и0, $\lambda - \mathrm{Hop}$; $\varkappa U\beta XA$, где $A - \Phi$ и0, $\varkappa - \mathrm{Hp}$, $X - \Pi H, U - T M, \beta - O \pi$. Во всех случаях указанное представление единственно.

Определим параметры [Пр] Фл0 следующими правилами:

 Π р 0.1. Π р Θ Ф A считаются Π н, входящие в A;

 Π р. 0.2. Π р Φ л0 λAB , где λ - Π р, A и B - Φ л0, считаются Π рA

 Π р. 0.3. Π р Φ л0 $\varkappa U$ рXA, где $\varkappa - \mathrm{K}$ р, $U - \mathrm{T}_{\mathrm{M}}$, $\beta - \mathrm{O}_{\mathrm{J}}$, $X - \Pi_{\mathrm{H}}$, $A - \mathrm{H}_{\mathrm{M}}$

 Φ л0, считаются Π H, входящие в U, и $\hat{\Pi}$ рA, отличные от X.

Будем называть замкнутыми Фл0 [ЗФ0] - Фл0 без Пр. Будем называть X Фл0 [XФ0], где X — ПН, Фл0, не имеющие Пр, отличных от X. Будем называть XY Фл0 [XYФ0], где X и $Y-\Pi$ н, Фл0, не имеющие

 Π р, отличных от X и от Y, и т. д.

Будем называть логической длиной Фл0 A в языке $\mathcal{A}_{\scriptscriptstyle 0}$ число вхождений ЛЗ в А. Имеется алгорифм Со. перерабатывающий всякую ФлО

в ее логическую длину.

Определим операцию подстановки Тм вместо Пн в Фл0. Результат подстановки Тм T вместо Π н X в Φ л0 A будет обозначаться $\mathfrak{F}_{01}XAT_1$. Определение будет индуктивным. Началом индукции будет служить случай, когда $\mathfrak{E}_{01}A_1=0$, т. е. когда $A-\partial\Phi$ (см. ниже пукт \mathfrak{F}_01). Далее, предполагая $\mathfrak{F}_{0L}XAT_{J}$ определенным, коль скоро $\mathfrak{E}_{0L}A_{J} \leq N$, где $N-\mathrm{HY}$, определим $\mathfrak{F}_{0L}XAT_{J}$ при $\mathfrak{E}_{0L}A_{J} = N+1$ (см. п.п. $\mathfrak{F}_{0}2$ и $\mathfrak{F}_{0}3$). Определим \mathfrak{F}_{0} XAT следующими равенствами:

 $\mathfrak{F}_0 1. \ \mathfrak{F}_0 \downarrow X(U \circ V) T = (\mathfrak{F}_1 X U \square T \circ \mathfrak{F}_1 X V \square T);$

 \mathfrak{F}_02 . $\mathfrak{F}_{01}X\lambda BCT = \lambda \mathfrak{F}_{01}XBT \mathfrak{F}_{01}XCT$;

 \mathfrak{F}_0 3. $\mathfrak{F}_{0\mathsf{L}} X \varkappa U \beta Y B T \Rightarrow \begin{cases} \varkappa \mathfrak{F}_{\mathsf{L}} X U \Box T_{\mathsf{J}} \beta Y B, \text{ если } X \text{ не есть отличный от } Y \\ \Pi \mathsf{p} \, B; \\ \varkappa \mathfrak{F}_{\mathsf{L}} X U \Box T_{\mathsf{J}} \beta Y \mathfrak{F}_{0\mathsf{L}} X B T_{\mathsf{J}}, \text{ если } X \not\equiv Y, X - \Pi \mathsf{p} \, B \text{ и} \\ Y \text{ не входит в } T; \\ \varkappa \mathfrak{F}_{\mathsf{L}} X U \Box T_{\mathsf{J}} \beta Z \mathfrak{F}_{0\mathsf{L}} X \mathfrak{F}_{0\mathsf{L}} Y B Z_{\mathsf{J}} T_{\mathsf{J}}, \text{ если } X \not\equiv Y, X - \Pi \mathsf{p} \, B \text{ и} Y \text{ входит в } T; \end{cases}$

здесь U и $V-\mathrm{Tm}$, $\sigma-\mathrm{Cn}$, $\lambda-\mathrm{Hop}$, B и $C-\mathrm{\Phi n0}$, $\varkappa-\mathrm{Hp}$, $\beta-\mathrm{On}$, $Y-\mathrm{Hh}$, $Z-\Pi$ н наименьшей длины, не входящая в T и не являющаяся Π рB.

Если $X-\Pi$ н, $A-\Phi$ л0 и $T-\Pi$ м, то $\mathfrak{F}_{01}XAT$, есть Φ л0 и $\mathfrak{E}_{01}\mathfrak{F}_{01}XAT$, Ξ

■ ColA .

Определим теперь наше понимание 3Ф0 посредством следующих восьми семантических соглашений:

Сс1. Замкнутая $\partial \Phi$ (U=V), где U и $V-\Pi T$, выражает графическое ра-

венство значений этих ПТ.

Cc2. Замкнутая $\Im \Phi$ ($U \neq V$), где U и $V - \Pi$ т, выражает графическое различие значений этих Пт.

Сс3. $3\Phi 0$ & AB, где A и $B-3\Phi 0$, выражает истинность обеих $3\Phi 0$

A и B.

указать верную $3\Phi 0$, совпадающую с A или с B.

Сс5. $3\Phi0$ $\forall U{<}XA$, где $U-\Pi$ т, $X-\Pi$ н, A-X Φ 0, выражает, верна всякая $3\Phi0$ вида $\mathfrak{F}_{0L}XAQ_{J}$, где Q—вербоидное начало $\mathfrak{W}_{L}U_{J}$.

Ссб. $3\Phi 0$ $\forall U>XA$, где U, X и A как в Ссб, выражает, что верна вся-

кая $3\Phi 0$ вида $\mathfrak{F}_{\text{oL}}XAQ_{\text{J}}$, где Q — вербоидный конец $\mathfrak{B}_{\text{L}}U_{\text{J}}$. Сс7. $3\Phi 0$ $\exists U{<}XA$, где U, X и A как в Сс5, выражает, что мы в состоянин указать вербоидное начало Q вербоида $\mathfrak{B}_{\mathbf{L}}U_{\mathbf{J}}$ такое, что верна $\mathfrak{F}_{01}XAQ_{1}$.

 $\exists U>XA$, где U, X и A такие же как в Сс5, выражает, что мы в состоянии указать вербоидный конец вербоида \mathfrak{V}_1U_1 такой, что верна

 $3\Phi 0 \quad \mathfrak{F}_{01} XAO_{1}$

Это определение также является индуктивным. Индукция идет здесь

по логической длине той 3ФО, понимание которой определяется.

В языке H_0 нет знака отрицания. Однако отрицание $\Phi_{\pi 0}$ может быть введено с помощью алгорифма Я, заменяющего во всякой Фл0 знак = знаком \neq , знак \neq — знаком =, знак & — знаком \lor , знак \lor — знаком &, знак V — знаком Ξ и знак Ξ — знаком V. Этот алгорифм перерабатывает всякую Φ л0 в Φ л0, причем для всякой $3\Phi 0 A 3\Phi 0 \& A \Re_1 A_1$ ложна, а З Φ 0 $\bigvee A$ $\Re_{\mathsf{L}}A$ \lrcorner верна. Это значит, что $\Re_{\mathsf{L}}A$ \lrcorner является прямым отрицанием $A^{(1)}$. Отсюда следует, что язык \mathcal{A}_0 разрешим: *имеется* алгорифм, применимый ко всякой $3\Phi0\,A$ и перерабатывающей A в \wedge тогда и только тогда, когда А верна.

На языке \mathcal{A}_0 выразимы некоторые предикаты, связанные с работой НА. Пусть $\mathfrak{A}-\mathrm{HA}$ в алфавите А. Может быть построена $x\Phi 0$ $(x^{-})_{\mathfrak{A}}$ такая, что $3\Phi 0\,\mathfrak{F}_{0\mathsf{L}}x(x^{-})_{\mathfrak{A}}\mathfrak{T}_{A\mathsf{L}}P_{\mathsf{L}}$ верна тогда и только тогда, когда слово P в алфавите А не поддается алгорифму \mathfrak{A} . Могут быть построены $\dot{x}y\Phi 0$ $(x\vdash y)_{\mathfrak{A}}$ и $(x\vdash \cdot y)_{\mathfrak{A}}$ такие, что каждая из $3\Phi 0$

 $\mathfrak{F}_{0\mathsf{L}} y \mathfrak{F}_{0\mathsf{L}} x (x \vdash y)_{\mathfrak{A}} \mathfrak{T}_{A\mathsf{L}} P_{\mathsf{J}} \mathfrak{T}_{A\mathsf{L}} Q_{\mathsf{J}}$ и $\mathfrak{F}_{0\mathsf{L}} y \mathfrak{F}_{0\mathsf{L}} x (x \vdash \cdot y)_{\mathfrak{A}} \mathfrak{T}_{A\mathsf{L}} P_{\mathsf{J}} \mathfrak{T}_{A\mathsf{L}} Q_{\mathsf{J}}$ тогда и только тогда верна, когда алгорифм \mathfrak{A} просто (и соответственно заключительно) переводит слово P в алфавите A в слово Q в этом алфави-

те. Здесь $x \rightleftharpoons (c)$, $y \rightleftharpoons (cc)$.

Вычислительный центр Академии наук СССР Москва Поступило 6 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 4 А. А. Марков, Вестн. Московск. унив., № 2 (1970). 2 А. А. Марков, Тр. Матем. инст. им. В. А. Стеклова, 42 (1954).