УДК 541.15:678.019.36:678 (742+743)-13

ФИЗИЧЕСКАЯ ХИМИЯ

Р. А. НАБЕРЕЖНЫХ, А. Д. СОРОКИН, Е. В. ВОЛКОВА, член-корреспондент АН СССР А. В. ФОКИН

РАДИАЦИОННАЯ СОПОЛИМЕРИЗАЦИЯ ТЕТРАФТОРЭТИЛЕНА С ГЕКСАФТОРПРОПИЛЕНОМ

Сополимеризация тетрафторэтилена ($T\Phi \Theta$) с гексафториропиленом ($\Gamma\Phi\Pi$) позволяет получить полностью фторированный полимер, выгодно отличающийся от политетрафторэтилена возможностью переработки в изделия обычными методами ($^{\hat{1}}$). Однако сведения о закономерностях такой реакции в литературе отсутствуют. В данном сообщении приведены основные результаты изучения сополимеризации $T\Phi\Theta$ и $\Gamma\Phi\Pi$ в жидкой фазе.

Реакцию сополимеризации инициировали у-излучением Со⁶⁰. Опыты проводили в автоклавных пробирках из нержавеющей стали. Выход сополимера определяли весовым путем, а его состав — по данным газохроматографического анализа смеси непрореагировавших мономеров. В работе использовали ТФЭ чистотой 99,96 % и ГФП чистотой 99,85 %. Очистку мономеров от кислорода проводили путем многократной переконденсации в вакууме. И.-к. спектры сополимеров снимали на спектрометре «Хитачи-225» в таблетках с бромистым калием. Радиационная сополимеризация ТФЭ и ГФП осуществлена в широком интервале составов исходной мономерной смеси. Экспериментальные данные по зависимости состава сополимера от состава мономерной смеси приведены в табл. 1.

Таблица 1 Радиационная сополимеризация ТФЭ (M₁) и ГФП (M₂) (мощность дозы 10 рад/сек; температура 20°)

Содержание М ₁ в моно- мерной смеси, мол.%		Содержа- ние М ₂ в сопо-	Степень превра- щения,	Средняя скорость,	Содержание М ₁ в моно- мерной смеси, мол. %		Содержа- ние М ₂ в сопо-	Степень превра- щения,	Средняя скорость,
на- чальн.	ко- нечн.	лимере, мол.%	вес.%	вес.%/час	на- чальн.	ко- нечн.	лимере, мол.%	вес.%	вес.%/час
2,3 6,9 9,6 10,2 14,9 15,7 17,3	0,7 5,9 6,9 3,4 6,6 7,2 8,5	43,6 20,8 13,2 16,1 9,2 8,8 8,3	2,3 1,0 2,5 6,3 7,2 7,5 7,9	0,05 0,25 0,5 0,3 1,4 1,7 2,6	30,0 50,1 60,0 70,0 85,0 100,0	8,4 17,9 — — —	3,7 2,4 — — —	18,5 32,9 10.4 13,3 16,8	10,1 35,9 48,2 * 99,7 * 3,4%/ /мин * 4,0%/ /мин *

^{*} При температуре 0°.

Как следует из данных табл. 1, при сополимеризации ТФЭ и ГФП происходит значительное обогащение сополимера тетрафторэтиленом при всех составах исходной мономерной смеси и заметное изменение состава последней уже при степенях превращения более 1%. С целью уменьшения ошибки, связанной с быстрым исчерпыванием активного компонента, при определении констант по методу Фейнемана — Росса (2) в расчетах вместо исходных были использованы усредненные значения состава мономерной смеси, рассчитанные как средние арифметические начальных и конечных концентраций компонентов. Полученные таким способом величины r_1 =70± ±20 и r_2 ≈0. Применение интегрального метода расчета Майо и Льюиса (³) дает r_1 =65±15 и r_2 ≈0. Учитывая степень точности указанных методов расчета, а также тот факт, что в описываемых экспериментальных условиях облучение $\Gamma\Phi\Pi$ не приводит к образованию гомополимера, следует принять r_1 =65±15 и r_2 =0. Из рис. 1, I видно, что экспериментальные зна-

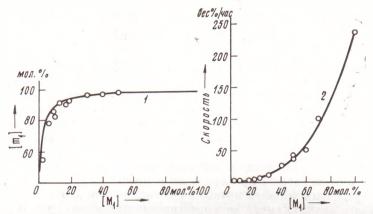


Рис. 1. Зависимость состава сополимера (1) и средней скорости сополимеризации (2) от содержания $T\Phi\partial$ (M_1) в исходной мономерной смеси

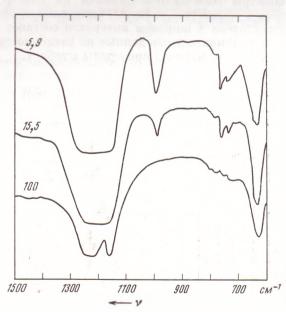


Рис. 2. И.-к. спектры сополимеров ТФЭ с ГФП. Цифры означают содержание ТФЭ в исходной мономерной смеси в мольных процентах

чения состава сополимера хорошо укладываются на теоретическую кривую, построенную по принятым величинам r_1 и r_2 . Полученные нами значения констант сополимеризации отличаются от недавно сообщенных в работе (4) r_1 =3,5; r_2 =0, где описана сополимеризация под действием у.-ф. света в газовой фазе при низких давлениях. Это отличие, по-видимому, связано с условиями проведения процесса, а также с различными методами определения констант сополимеризации.

Найденные значения констант сополимеризации указывают на то, что: 1) радикал, находящийся на конце растущей полимерной цепи, реагирует преимущественно с ТФЭ; 2) рассматриваемая бинарная система относится к случаю, когда один из мономеров не способен к гомополимеризации и оказывается невозможным получить сополимер с содержанием ГФП более 50 мол. %; 3) боковые трифторметильные группы в полимерной цепи

расположены изолированно.

Средняя скорость сополимеризации непрерывно увеличивается с ростом исходной концентрации $T\Phi \vartheta$ (рис. 1, 2). Исчерпывание активного компонента приводит к тому, что сополимеризация протекает с предельной степенью превращения, определяемой исходной концентрацией $T\Phi \vartheta$. Изучение зависимости степени превращения от времени облучения при различных мощностях дозы и температурах позволило определить показатель степени при мощности дозы n=0,46 и эффективную энергию активации 2,6 ккал/моль. Близость показателя n к 0,5, ингибирование реакции кислородом и триэтиламином, а также температурная зависимость скорости свидетельствуют о радикальном механизме радиационной сополимеризации $T\Phi \vartheta$ и $\Gamma\Phi \Pi$ в жидкой фазе.

И.-к. спектры сополимера (рис. 2) отличаются от спектра политетрафторэтилена, полученного в аналогичных условиях, наличием новых полос поглощения в области 982 и 800—700 см⁻¹. Поглощение в области 982 см⁻¹ обусловлено присутствием трифторметильной группы (5, 6). Появление слабых полос поглощения в области 800—700 см⁻¹ связано, по-видимому,

с наличием аморфной структуры в сополимере (7).

Исходя из полученных нами величин r_1 п r_2 и литературных данных для $T\Phi \ni Q_1 = 0.049$, $e_1 = 1.22$ (*), были рассчитаны параметры $\Gamma\Phi\Pi$ по схеме Алфрея — Прайса $Q_2 = 0.01$ и $e_2 = 3.36$ (для получения действительных значений принято $r_1 \cdot r_2 = 0.01$); $e_2 > e_1$, что вполне согласуется с сильным индуктивным эффектом трифторметильной группы. Кроме того, в молекуле $T\Phi \ni$ индуктивное влияние атомов фтора частично компенсируется противоположным по направлению мезомерным эффектом. Близость значений параметра Q обоих мономеров может быть следствием ограниченности Q-eсхемы, формально не учитывающей стерических затруднений, возникающих при построении полимерной цепи с участием $\Gamma\Phi\Pi$.

Авторы выражают благодарность В. В. Федотовой за снятие и.-к.

спектров.

Поступило 16 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. J. Diamond. Plastics, 27, 109 (1962). ² M. Fineman, S. D. Ross, J. Polymer Sci., 5, 259 (1950). ³ F. R. Mayo, F. M. Lewis, J. Am. Chem. Soc., 66, 1594 (1944). ⁴ A. C. Кабанкин, С. А. Балабанова, А. М. Маркевич, Высокомолек. соед., A12, 267 (1970). ⁵ M. Hauptschein, J. Am. Chem. Soc., 80, 851 (1958). ⁶ G. Dube, H. Kriegsmann, Zs. Chem., № 11, 422 (1965). ⁷ C. Лянг, С. Кримм, в сборн. Физика полимеров, ИЛ, 1960, стр. 277; L. H. Bolz, R. K. Eby, J. Res. Nat. Bur. Standards, 69A, 481 (1965). ⁸ Д. Хэм, Сополимеризация, М., 1971, стр. 604.