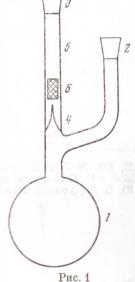

Доклады Академии наук СССР 1973. Том 212, № 2


ФИЗИЧЕСКАЯ ХИМИЯ

Г. В. ФОМИН, Г. II. БРИН, М. В. ГЕНКИН, А. К. ЛЮБИМОВА, Л. А. БЛЮМЕНФЕЛЬД, член-корреспондент АН СССР А. А. КРАСНОВСКИЙ

МАСС-СПЕКТРОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ФОТОРАЗЛОЖЕНИЯ ВОДЫ В СИСТЕМЕ НЕОРГАНИЧЕСКИЙ СЕНСИБИЛИЗАТОР — АКЦЕПТОР ЭЛЕКТРОНА

В качестве химической модели реакции фоторазложения воды при фотосинтезе была предложена система — суспензия неорганического полупроводника-фотосенсибилизатора в водном растворе, содержащем соединения с выраженными электроноакцепторными свойствами, в качестве которых использовали соединения окисного железа, *п*-бензохинон (1-4). Установлено выделение кислорода при освещении таких систем с квантовым выходом до

В настоящей работе это положение доказано в прямых опытах с использованием меченой по кислороду воды (H₂O¹⁸). Реакцию проводили в сосудах, представленных на рис. 1. В шар І заливали исследуемую суспензию, из которой через отвод 2 удаляли воздух вакуумированием по 10-3 мм рт. ст. с трехкратным повторением цикла замораживание размораживание, после чего отвод запаивали. Реакционную смесь освещали либо полным спектром лампы ДРШ-1000 (10⁶ эрг/см²·сек) в течение 30 мин., либо через светофильтр ЖС-10 в течение часа ($\lambda > 400 \text{ мµ}$). Для анализа состава летучих компонентов над суспензией применяли масс-спектроскопический метод (масс-спектрометр МХ 1203). Образцы через отвод 3 присоединялись к входному объему масс-спектрометра. Шар 1 помещался или в жидкий азот, или в смесь адетона с сухим льдом $(t = -40 - 77^{\circ} \,\mathrm{C})$. Для ввода летучих компонентов в

масс-спектрометр игла 4 разбивалась специальным стальным бойком 6, который можно было перемещать вдоль трубки 5 с помощью магнита. В качестве акцепторов электрона применяли феррицианид калия (марки х.ч.) и парабензохинон. Последний очищали с помощью возгонки. Использовали неорганические полупроводники: окись цинка (для люминофоров), вольфрамовую кислоту (марки ч.), вольфрамовый ангидрид (для спектрального анализа). Навески порошка полупроводника — 500 мг на 10 мл водного раствора электронного акцептора. Концентрации феррицианида $6\cdot 10^{-3}$ мол/л, парабензохинона ($C_6H_4O_2$) $9\cdot 10^{-3}$ мол/л. Для определения процентного состава тяжелокислородной воды ее разлагали электрохимически в описанных выше сосудах, в которые дополнительно были впаяны платиновые электроды. Масс-спектрометрически исследовали состав выделяющегося кислорода. Оказалось, что соотношение $O^{16}O^{18}/O_2^{16}=15$, отсюда $H_2O^{18}/H_2O^{16}=7,5\%$.

Эксперименты показали, что во всех случаях при освещении исследуемых систем полным светом лампы ДРШ-1000 наблюдается выделение кислорода, изотопный состав которого близок к составу воды. В табл. 1 приведена серия из девяти опытов, в число которых включены как прямые опыты для определения изотопного состава кислорода, так и некоторые специальные — для выяснения деталей механизма его образования. Основные массы, по которым проводили измерения, были: M = 28 (N_2 и CO), M = 32 (O_2^{16}), M = 34 ($O^{16}O^{18}$), M = 44 (O_2^{16}).

 ΔI — интенсивность (приращение над фоном) линии, соответствующей определенной массе. $\Delta I_{28}({\rm N_2})$ — абсолютная интенсивность азотной линии, получена вычитанием из интенсивности линии ΔI_{28} интенсивности, которую обычно имеет спутник (соответствующий CO) линии с M=44 (CO₂). ΔI_{32} / $\Delta I_{28}({\rm N_2})$ характеризует выделение или поглощение кислорода. Для

воздуха I_{32} / $I_{28}\sim 25\%$, ΔI_{34} / ΔI_{32} — изотопный состав кислорода.

Таблица 1

Ne onnta	Условия опытов	ΔI_{26}	$\Delta I_{28}(N_2)$	ΔI_{32}	ΔI_{34}	ΔI_4	\(\frac{\Delta I_{32}}{\Delta I_{28}(\text{N}_3), \%} \)	$^{\Delta I_{34}/\Delta I_{32},}_{\%}$
1	ZnO+K ₃ Fe(CN) ₆	75 80	75 80	250 220	40 32	0	330 280	16 15
2	ZnO+K ₃ Fe(CN) ₆ фильтр ЖС-10	52 51	52 51	12	0	1 0	22 35	0
3	$H_2WO_4 + K_3Fe(CN)_6$	93 150	38 140	153 200	25 26	690 170	410 140	16 13
4	$WO_3+K_3Fe(CN)_6$	70 61	60	230 76	37 11	120 75	380 438	16 15
5	WO₃+K₃Fe(CN) ₆ фильтр ЖС-10	140 54	130	120 50	14	140 42	90	12 14
6	$ZnO+C_6H_4O_2$	370 330 240	200 130 140	84 64 64	10 7 8	2200 2200 1700	42 50 46	12 11 13
7	ZnO+C ₆ H ₄ O ₂ фильтр ЖС-10	33 230	16 150	4 50	0	220 980	25 33	0
8	$ZnO+C_6H_4O_2+C_6H_6 \ ZnO+K_3Fe(CN)_8 \ H_2O-9$ мл C_2H_5OH-1 мл	150 5	110	4 0	0	440	0	0

Данные опытов №№ 1, 3—6 свидетельствуют о выделении кислорода воды, а не сенсибилизатора. Наблюдавшиеся небольшие отличия в изотопном составе воды и выделяющегося кислорода связаны, по-видимому, с неполным удалением из образцов кислорода воздуха. Следует заметить, что при быстром обмене кислорода воды и сенсибилизатора изотопные измерения теряют смысл, так как в этом случае изотопные составы кислорода воды и окисла должны совпадать. Однако, как следует из работы (5), такого обмена в условиях опыта ($t = 20^{\circ}$ С) практически не происходит. При использовании WO_3 в качестве сенсибилизатора наблюдается частичное восстановление поверхности с образованием вольфрамовой сини. Специальные опыты с вольфрамовой синью, полученной восстановлением гидросульфитом, а затем тщательно промытой от его избытка, показали, что выделение кислорода на вольфрамовой сини не происходит, так что возможное предположение об участии ее в качестве фотосенсибилизатора следует исключить.

Можно высказать два следующих альтернативных предположения о детальном механизме изучаемого процесса. Известно (6-8), что гомогенные растворы ряда акцепторов электрона при освещении способны окислять воду с образованием химически чрезвычайно активных ОН-радикалов,

которые во вторичных реакциях взаимодействуют с растворенными соединениями, что препятствует образованию молекулярного кислорода. Одна возможность заключается в том, что в исследуемых суспензиях первичными окислителями воды являются возбужденные состояния электронных акцепторов, а роль поверхности заключается только в стабилизации радикалов ОН и облегчении их рекомбинации с образованием в конечном итоге молекулярного кислорода.

Другая возможность заключается в первичном фотовозбуждении полупроводника (т. е. возбуждении электронов из валентной зоны в зону проводимости), с последующим окислением его молекулой электронного акцептора. Непосредственным окислителем волы в этом случае должны высту-

пать «дырки», образующиеся на поверхности полупроводника.

Данные опытов №№ 1, 2 и 6 для суспензий ZnO свидетельствуют в пользу второго предположения. Так, при освещении образцов светом с $\lambda > 400$ мµ, свет поглощается только молекулами электронного акцептора, при этом происходит фотоокисление воды с образованием ОН-радикалов ($^{6-8}$), но образования молекулярного кислорода не наблюдается. Выделение кислорода паблюдается при освещении областью спектра, в которой поглощают свет окись цинка и двуокись титана ($\lambda < 400$ мµ). Для вольфрамового ангидрида, у которого длинноволновая граница поглощения лежит около 500 мµ, освещение в полосе с $\lambda > 400$ мµ приводит к выделению кислорода (опыты №№ 4, 5).

Фотоокисление воды с выделением одной молекулы кислорода требует переноса 4 электронов, который можно представить следующими реактиями:

$$40H^{-} \xrightarrow{-4\bar{e}} 4\dot{0}H \rightarrow 2H_2O + O_2,$$
 (1)

$$2OH^{-} \xrightarrow{-2e} H_2O_2 \xrightarrow{-2e} O_2 \div 2H^+,$$
 (2)

$$20H^{-} \stackrel{-2\bar{e}}{\longrightarrow} 20H \stackrel{-2\bar{e}}{\longrightarrow} O_2 + 2H^+. \tag{3}$$

Во всех этих случаях можно предполагать либо одновременный перенос электронов с образованием кислорода или относительно долгоживущего промежуточного продукта — перекиси водорода, либо последовательную передачу электронов с образованием активных частиц (ОН и О). Например, в предположении о промежуточном образовании перекиси водорода (реакция (2)) одновременный перенос двух электронов можно представить в реакционном комплексе, включающем две молекулы воды и два рядом расположенных активных центра («дырки») на поверхности катализатора; таким образом, происходит окисление сразу двух молекул воды с образованием перекиси водорода. Такой процесс является не радикальным и энергетически более выгоден, так как в элементарном акте происходит образование новой связи (О—О).

Опыты с введением эффективных акцепторов гидроксильных радикалов — бензола, этанола (опыты $N \ge N \ge 8$, 9), трет.-бутанола, в которых наблюдалось полное ингибирование выделения O_2 , показали, что образование кислорода (или перекиси водорода) сопровождается появлением в качестве

промежуточных продуктов активных радикальных частиц.

Известно (°), что под действием реактива Фентона ($\mathrm{Fe^{2+} + H_2O_2}$), который является источником гидроксильных радикалов (¹°), парабензохинон подвергается глубокой деструкции вплоть до двуокиси углерода. Действительно, в системе, содержащей бензохинон, наблюдается высокий выход $\mathrm{CO_2}$ в согласии с ранними наблюдениями (³).

Таким образом, поверхность сенсибилизатора является не только первичным окислителем воды, но и, по всей вероятности, способствует образованию молекулярного кислорода. Родь поверхности в последнем процессе

может заключаться, с одной стороны, в сорбции и стабилизации первично возникающих активных радикалов, с другой— в облегчении их направленной рекомбинации по слою структурированной на поверхности воды.

Институт химической физики Академии наук СССР

Поступило 11 IV 1973

Институт биохимии им. А. Н. Баха Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Красновский, Г. П. Брин, ДАН, 139, 142 (1961). ² А. А. Красновский, Г. П. Брин, ДАН, 147, 656 (1962). ³ А. А. Красновский, Г. П. Брин, в сборн. Молекулярная фотоника, «Наука», 1970, стр. 161. ⁶ А. А. Красновский, Г. П. Брин, З. Ш. Алиев, ДАН, 199, 952 (1971). ⁵ Л. А. Касаткина, Кандидатская диссертация, МХТИ, 1963. ⁶ Г. В. Фомин, В. А. Римская, В сборн. Состояние и роль воды в биологических объектах, 1967, стр. 133. ⁷ С. И. Шолина, Г. В. Фомин, Л. А. Блюменфельд, ЖФХ, 18, 800 (1969). ⁸ В. А. Кузьмин, Кандидатская диссертация, МГУ, 1971. ⁹ Н. Каwasaki, J. Chem. Soc. Јарап, 67, 1554 (1964). ¹⁰ У. Уотерс, Механизм окисления органических соединений, М., 1966.