УДК 547.412.6+547.639+547.661

ХИМИЯ

Е. Ц. ЧУКОВСКАЯ, М. А. РОЖКОВА, член-корреспондент АН СССР Р. Х. ФРЕЙДЛИНА

РЕАКЦИЯ ЭТИЛЕНА С ДДТ, ИНИЦИИРУЕМАЯ Fe(CO)₅ В СРЕДЕ ИЗОПРОПАНОЛА ИЛИ АЦЕТОНИТРИЛА

В развитие исследования найденной двумя из авторов данной статьи совместно с Н. А. Кузьминой реакции α,α,α -трихлоралифатических соединений с олефинами, инициируемой $\mathrm{Fe}(\mathrm{CO})_5$ и нуклеофильными добавками (¹), мы изучили реакцию с этиленом такого адденда, как 1,1,1-трихлор-2,2-бис-(n-хлорфенил)-этан (ДДТ), содержащего CCl_3 -группу, связанную с бензильной группировкой. Оказалось, что в этом случае выявляются особенности по сравнению с ранее изученными α,α,α -трихлоралканами *.

Так, ДДТ легко присоединяется к этилену под давлением, при 140° , в среде изопропанола или ацетонитрила при инициировании реакции $Fe(CO)_5$, однако вместо аддукта образуется 2,2,6(7)-трихлор-1-(n-хлорфенил)-тетрагидронафталин (ТГН). Выход ТГН (считая на прореагировавший ДДТ) в случае проведения реакции в среде CH_3CN составил 85%, а в $uso-C_3H_7OH-56\%$; напротив, конверсия ДДТ в $uso-C_3H_7OH$ выше (78%), чем в CH_3CN (45%). В $uso-C_3H_7OH$ более заметно побочное восстановление исходного ДДТ до 1,1-дихлор-2,2-бис-(n-хлорфенилэтана) (ДДД).

Специальными опытами показано, что в отсутствие этилена *изо*-С₃H₇OH восстанавливает ДДТ при 140°. Реакция катализируется Fe(CO)₅. Выход

ДДТ близок к количественному.

Строение всех полученных продуктов подтверждено спектрами п.м.р. ** Строение ТГН подтверждено также спектрами я.м.р. С¹³ и я.к.р. Сl³⁵. (Не удалось установить, находится ли хлор в положении 6 или 7 ароматического кольпа ТГН.)

Кроме того проведено дегидрохлорирование ТГН, причем получен 2,6(7)-дихлор-1-(n-хлорфенил)-3,4-дигидронафталин (ДГН), с выходом 86,5% от теоретического. Реакция велась в растворе хлорбензола в присутствии $FeCl_3$ по методу (7).

Можно предположить, что при реакции ДДТ с этиленом ТГН и ДДД

образуются по следующей схеме:

Схема 1 ***

$$(\operatorname{ClC}_{6}\operatorname{H}_{4})_{2}\operatorname{CHCCl}_{3} + \operatorname{Fe}^{n} \to (\operatorname{ClC}_{6}\operatorname{H}_{4})_{2}\operatorname{CHCCl}_{2}^{*} + \operatorname{Fe}^{n+1}(\operatorname{Cl}), \tag{1}$$

 $\frac{(\text{ClC}_6\text{H}_4)_2\text{CHCCl}_2^* + \text{C}_2\text{H}_4 \rightarrow (\text{ClC}_6\text{H}_4)_2\text{CHCCl}_2\text{CH}_2\text{CH}_2\text{C}}{(2)},$

** Авторы приносят свою олагодарность В. И. Достоваловой за полученные ею спектры я.м.р. и участие в их обсуждении и интерпретации. Спектры п.м.р. Н¹ получены для 50% раствора вещества в ССl₄, эталон гексаметилдисилоксан, спектрометр «Хитачи — Перкин — Эльмер», R-20, 60 Мгц. Спектры я.м.р. С¹³ с подавлением СН-взаимодействий получены для 50% раствора вещества в СНСl₃, спектрометр «Брукер», НХ-90. Химические сдвиги приводятся относительно тетраметилсилана.

*** Fe^n и $Fe^{n+1}(Cl)$ символизируют наличие в реакционной смеси двух комплексов

железа в разном валентном состоянии (2).

^{*} Предварительные результаты, полученные нами при изучении реакции $C_6H_5CCl_3$ с пропиленом и гексеном-1, инициируемой $Fe(CO)_5$ в среде изоамилового спирта, показывают, что если CCl_3 -группа непосредственно связана с ароматическим ядром, то устойчивый радикал $C_6H_5CCl_2$ стабилизируется либо отрывом водорода от изоамилового спирта с образованием $C_6H_5CICl_2$, либо димеризацией и последующим дехлорированием с образованием смесей $(C_6H_5CCl_2)_2$ и $(C_6H_5CCl)_2$. Адлукты с олефинами не были обнаружены. Побочно образуются C_6H_5COl и C_6H_5C

$$A \xrightarrow{a} ClC_{6}H_{4}Cl \xrightarrow{Fe^{n+1}(Cl)} CH_{2} \xrightarrow{Fe^{n+1}(Cl)} CH_{2} + HCl + Fe^{n} (3)$$

$$A \xrightarrow{a} ClC_{6}H_{4}\dot{C}HCCl_{2}CH_{2}CH_{2}C_{6}H_{4}Cl (B)$$

$$CH \xrightarrow{CH_{2}} CH_{2} + HCl + Fe^{n} (3)$$

$$CH \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{2} + HCl + Fe^{n} (5)$$

Рассмотрим стадии схемы 1. На стадии (3) или (5) происходит циклизация арилбутильных радикалов. В литературе известны примеры такой циклизации (3 , 4). Так, при окислении 5-(n-метоксифенил)-5-фенилвалериановой кислоты тетраацетатом свинца (3) промежуточный радикал циклизовался по схеме:

 $(ClC_6H_4)_2CHCCl_2^{\bullet} + uso-C_3H_7OH \rightarrow (ClC_6H_4)_2CHCCl_2H.$

$$\begin{array}{c} C_6H_5 \\ \text{CHCH}_2\text{CH}_2\text{CH}_2^* \longrightarrow \\ \text{CH} \longrightarrow \\$$

Аналогично протекала циклизация n-нитрофенилбутильного радикала при окислении CuCl_2 . Следует отметить, что в последнем случае главным направлением был отрыв хлора этим радикалом, а циклизация до 6-нитро-1,2,3,4-тетрагидронафталина проходила лишь в незначительной степени (4). Наличие заместителя в n-положении фенильного ядра мало сказывает-

ся на обсуждаемой циклизации (³).

На стадии (4) представлена 1,4-миграция арила. 1,4-переход арильных групп известен на единичных примерах (5). Стадия (4), включающая такой переход, представляется в данном случае вероятной, так как приводит образованию устойчивого бензильного радикала, стабилизированного соседней CCl₂-группой. Перегруппировка А в В находится в соответствии с закономерностью, сформулированной в результате изучения радикальных внутримолекулярных перегруппировок в полихлоралкильных радикалах: перегруппировка течет в сторону образования наиболее устойчивого радикала (6). Другим доводом в пользу 1,4-миградии арила может явиться то, что радикал A должен был бы легко отрывать хлор от $Fe^{n+1}Cl$, как это наблюдалось на многочисленных примерах реакций AlkCCl₂CH₂CHXрадикалов в сравнимых условиях, а также на примере $n\text{-NO}_2\mathrm{C}_6\mathrm{H}_4$ CH₂CH₂CH₂CH₂-радикала (4). Напротив, бензильный радикал В не способен к такому отрыву и этим может объясняться, что внутримолекулярная циклизация становится главным направлением реакции ДДТ с этиленом. Аналогичной перегруппировки можно ожидать и для упомянутого выше 4-(n-метоксифенил)-4-фенилбутильного радикала (3), хотя авторы и не рассматривают такой возможности. Однако из-за того, что положение хлора в ароматическом ядре тетрагидронафталина не установлено, о перегруппировке можно говорить лишь предположительно.

Интересной особенностью рассматриваемой внутримолекулярной циклизации является то, что для всех ранее изученных нами реакций

(6)

 $AlkCCl_2CH_2\dot{C}HX$ -радикалов на стадии передачи цепи осуществлялась окислительно-восстановительная передача хлора от соединения железа к радп-калу по схеме

 $AlkCCl_2CH_2CHX + Fe^{n+1}Cl \rightarrow AlkCCl_2CH_2CHClX + Fe^n$.

В данном случае протекает перенос электрона от радикала к соединению железа (стадии (3) или (5) схемы 1).

Следует подчеркнуть также, что образование продуктов внутримолекулярной циклизации рассматривается как доказательство наличия 4-арилбутильных радикалов (3). Изученная нами реакция α,α,α -трихлор- β,β -диарилэтана с этиленом, инициируемая $Fe(CO)_5$ в среде изопропанола, является новым удобным методом генерирования различных 4-арил-3,3-дихлорбутильных радикалов, наряду с методами окисления замещенных 5-арилвалериановых кислот или альдегидов, широко описанных в литературе для изучения свойств аналогичных арилбутильных радикалов.

Экспериментальная часть

1. Реакция ДДТ с этиленом, инициируемая $Fe(CO)_5$. а) В среде изо- C_3H_7OH . В эмалированный автоклав емкостью 0,25 л номещены: 100 ммол. ДДТ, 1,2 моля изо- C_3H_7OH и 5 ммол. $Fe(CO)_5$; введен этилен до давления 40 атм. Автоклав нагревался при 130—140° в течение 6 час. Реакционная смесь промыта 5% HCl, экстрагирована $CHCl_3$, высушена над MgSO₄. После отгонки растворителей остаток (42 г) анализирован методом г.ж.х. На хроматограмме реакционной смеси имеется 4 пика. По заведомым образцам идентифицированы 1-ДДД, 2-ДДТ, 3-продукт дегидрохлорирования ТГН, 4-ТГН. Из хроматограмм рассчитано: конверсия ДДТ 78%; выход ТГН 56% *, выход ДДД 25%, считая на прореагировавший ДДТ. Из реакционной смеси выделены ДДТ и ТГН дробной кристализацией. Из гексана выпадает смесь ДДД и ДДТ. Фильтрат упарен и растворен в абс. этаноле. Из этанола выделен ТГН с т. пл. 91—92°.

Найдено %: С 55,58; Н 3,64; Сl 40,77 $C_{16}H_{12}Cl_1$. Вычислено %: С 55,52; Н 3,49; Сl 40,97

Мол. вес найден 317, вычислен 346.

В спектре п.м.р. этого соединения в фенильной области имеется плохо разрешенный мультиплет, в котором присутствует симметричная группа линий с центром при $\delta_{\rm Al}=7,20\,$ м.д. Оставшаяся группа линий не противоречит типу ABC для трехзамещенного фенила **. Кроме того, в спектре наблюдается уширенный синглет при $\delta_{\rm CH}=4,62\,$ м.д. п плохо разрешенная система AA'BB' от протонов $-{\rm CCl_2CH_2CH_2Ar}$ с $\delta_{\rm CH_2}=3,10,\,\delta_{\rm CH_2Ar}=2,67\,$ м.д. Спектры я.к.р. ${\rm Cl^{35}}$ и я.м.р. ${\rm Cl^{35}}$ имеются линии $34,755\,$ и $35,000\,$ Мгц (${\rm Cl}-$ ароматический) и $35,364;\,36,330\,$ Мгц (${\rm CCl_2}$). В спектре я.м.р. ${\rm C^{13}}$ имеется 10 линий в фенильной области и $4-\rm B$ алифатической: $\delta_{\rm CH}=60,4;\,\delta_{\rm CCl_2}=90,9;\,\delta_{\rm CH_2}=40,1;\,\delta_{\rm CH_2Ar}=28,0\,$ м.д. ***.

б) В среде ацетонитрила. Опыт проведен и обработан аналогично предыдущему, но вместо *изо*-С₃Н₁ОН взято 1,2 моля СН₃СN. Остаток после отгонки легколетучих веществ (35,3 г) содержит по данным г.ж.х. 4 вещества. Конверсия ДДТ 45%; выход ТГН 85%; выход ДДД 7%, считая на

** Для сравнения получен спектр п.м.р. для ДДТ: спектр содержит в фенильной области ($\delta=7,35$ м.д.) симметричный уширенный квартет AA'BB' $\delta_{AB}=0,4$ м.д. и уширенный синглет с $\delta_{CH}=5,05$ м.д.

^{*} Независимым путем показано, что в условиях хроматографии ДГН образуется из ТГН в результате термического дегидрохлорирования. Выход указан на сумму ДГН + ТГН

^{***} В процессе обсуждения структуры были получены спектры я.м.р. C^{13} модельных соединений: (ClCH₂CH₂)₂CCl₂: $\delta_{CCl_2}=89,0$; $\delta_{CH_2}=38,8$; $\delta_{CH_2Cl_2}=50,4$ м.д. и $n\text{-ClC}_6H_4\text{CH}_2\text{CH}_2\text{CCl}_3$: $\delta_{CCl_3}=99,00$; $\delta_{CH_2}=56,38$; $\delta_{CH_2Ar}=32,08$ м.д. от TMC.

прореагировавший ДДТ. Получен ТГН, совпадающий с продуктом из опыта 1 а) по температуре плавления, анализу и спектрам я.м.р. Н¹ и С¹³.

2. Восстановление ДДТ изопропанолом в присутствии $Fe(CO)_5$. В эмалированный автоклав помещены 100 ммол. ДДТ, 1,2 моля изо- C_3H_7OH и 5 ммол. $Fe(CO)_5$. Автоклав нагрет при 135° в течение 6 час. Из реакционной смеси получено 26,1 г ДДД с т. пл. 107—108°. Лит. данные (8): 110—111°. Выход 91% от теоретического. В спектре п.м.р. этого соединения имеется сигнал при $\delta_{Ar}=7,25$ м.д. от фенильных протонов (тип BB'CC') с практически пулевым сдвигом и 2 дублета от протонов СНСНС $_2$ при $\delta_{CH}=4,47$, $\delta_{CHC}_2=6,23$ м.д., $J_{AX}=7,5$ гц.

3. Дегидрохлорирование 2,2,6(7) - трихлор - (n-xлорфенил) - тетрагидронафталина. В растворе 60 мл хлорбензола нагревалось при $90-95^{\circ}$ 12 ммол. ТГН в присутствии 0,4 ммоля FeCl₂ в течение 4 час. Выделен 2,6(7)-дихлор-(n-xлорфенил)-дигидронафталин 3,2 г (86,5%) от теоретического) с т. кип. $155-160^{\circ}$ при 0,1 мм. Т. пл. $66-68^{\circ}$

(из этанола).

Найдено %: С 61,91; Н 3,67; Сl 34,16 С₁₆Н₁₁Сl₃. Вычислено %: С 62,07; Н 3,58; Сl 34,35

В спектре п.м.р. этого соединения в фенильной области произошло разделение сигналов дизамещенного фенильного кольца и трехзамещенного 3,4-дигидронафталинового. Для дизамещенного фенила наблюдается симметричный уширенный квадруплет с центром $\delta_{\rm Ar}=7,22$ м.д. Для ароматического кольца трехзамещенного 3,4-дигидронафталина наблюдаются сигналы от системы ABC при $\delta=6,40$; $\delta=6,86$; $\delta=7,00$ м.д. $J_{\rm AB}=10$ гц; $J_{\rm AC}=2$ гц. Протоны 3,3- и 4,4-дигидронафталинового кольца образуют систему AA'BB' при 2,87 м.д. с малым внутренним сдвигом. Получен также спектр я.м.р. C^{13} . В алифатической части спектра имеются 2 сигнала: $\delta_{\rm CH_2}=32,4$; $\delta_{\rm CH_2Ar}=28,6$ м.д. На модельных соединениях (CICH₂CH₂CCl=)₂ и (CICH₂CH₂CH₂CCl=)₂ установлено, что сигнал от CCl- (соответственно 128,4 и 129,5 м.д.) попадает в фенильную область спектра.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 16 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. Ц. Чуковская, Н. А. Кузьмина, Р. Х. Фрейдлина, Изв. АН СССР, сер. хим., 1969, 1198; там же, 1970, 2343. ² Р. Х. Фрейдлина, Н. А. Григорьев и др., ДАН, 205, 602 (1972). ³ D. J. Davies, C. Warning, J. Chem. Soc., С. 1968, 1865. ⁴ Б. В. Конылова, Л. В. Яшкина, Р. Х. Фрейдлина, Изв. АН СССР, сер. хим., 1972, 976. ⁵ S. Winstein, R. Heck et al., Experientia, 12, 138 (1956). ⁶ Р. Х. Фрейдлина, В. Н. Кост, М. Я. Хорлина, Усп. хим., 31, 19 (1962). ⁷ В. Н. Кост, Р. Х. Фрейдлина, Изв АН СССР, ОХН, 1961, 1252. ⁸ Н. Н. Мельников, В. А. Набоков, Е. А. Покровский, ДДТ, свойства и применение, М., 1954, стр. 111.