УДК 547.665 <u>ХИМИЯ</u>

Член-корреспондент АН СССР Н. С. НАМЕТКИН, Е. Ш. ФИНКЕЛЬШТЕЙН, Е. Б. ПОРТНЫХ, В. М. ВДОВИН

АЛКИЛИРОВАНИЕ БЕНЗОЛА И ЕГО ПРОИЗВОДНЫХ ИНДАНОМ С РАСКРЫТИЕМ ПЯТИЧЛЕННОГО КОЛЬЦА

А. В. Топчиев с сотрудниками, исследуя алкилирование индана олефинами под действием катализаторов Фриделя—Крафтса, наряду с алкилинданами наблюдали образование высококипящих продуктов, строение которых, однако, не было псследовано (4). Бушик исследовал поведение индана в среде сверхсильных кислот ($HF \cdot BF_3$) и обнаружил, что индан способен к перераспределению С—С-связей пятичленного кольца с образованием гаммы продуктов, включая полициклические конденсированные углеводороды и диарилалкилены (2).

Мы показали, что индан может быть использован как мономер, эффективно олигомеризующийся под действием галогенидов алюминия (2-10 мол.%) до маслообразных продуктов с молекулярным весом до 500 по схеме (3):

$$\begin{array}{c|c} & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ &$$

Приведенная структура олигомера, по-видимому, формируется в результате ступенчатого алкилирования, сопровождающегося расщеплением пятичленного кольца.

В настоящей работе мы исследовали возможности индана в качестве

алкилирующего агента по отношению к бензолу, толуолу, ксилолу.

Взаимодействие проводили в присутствии возогнанного $AlBr_3$, который брали в количестве 20 мол. % в расчете на индан, в атмосфере сухого аргона, при использовании свежеперегнанных над Na углеводородов. Соотношение индана к алкилируемым углеводородам составляло 1:10, температура опытов $40-80^{\circ}$ C, время 8 час. В этих условиях индан эффективно алкилировал бензол, толуол, ксилол без заметной олигомеризации.

Единственным продуктом взаимодействия индана с бензолом (схема 1)) был 1,3-дифенилпропан (т. кип. $104-106^{\circ}/10^{-2}$, n_D^{20} 1,5578), образующийся при $40-80^{\circ}$ с выходом 40-50%. Для его идентификации был проведен встречный синтез по схеме 2). Физико-химические константы, и.-к. спектры и спектры я.м.р. продуктов, полученных по обеим схемам, оказа-

лись практически пдентичными.

Следует отметить высокую селективность алкилирования бензола инданом. Реакция практически не осложнялась процессами уплотнения и осмоления (≤2%). По данным г.ж.х. (апиезон L) в алкилате кроме непрореагировавших бензола и индана присутствовал только 1,3-дифенилпропан. Обращает на себя внимание отсутствие в продуктах реакции 1,2-дифенилпропана (г.ж.х., я.м.р.). В то же время этот изомер, по нашим данным, был единственным продуктом алкилирования бензола аллилбензолом (схема 3)) и в значительных количествах (схема 4)) образовывался при алкилировании бензола γ-бромпропилбензолом в стандартных условиях (20 мол.% AlBr₃ на алкилирующий агент, 10-кратный избыток

бензола, 80°, 8 час.) Следовательно, аллилбензол и ү-бромпропилбензол не являются промежуточными продуктами при алкилировании бензола

инданом в присутствии AlBr₃.

Не менее активно индан алкилировал толуол (табл. 2, схема (5)). В этом случае реакция сопровождалась побочными процессами, вклад которых, однако, был невелик. При температурах опыта 60—80° алкилат наряду с непрореагировавшими исходными соединениями содержал смесь углеводородов, идентификация которых осуществлялась методами г.ж.х. и я.м.р.

5)
$$CH_2$$
 + CH_3 EH_3 EH_4 CH_3 EH_4 CH_2 CH_3 CH_4 CH_2 CH_3 CH_4 CH_2 CH_4 CH_5 CH_5 CH_6 CH

Поскольку алкилирование толуола может проходить в o-, m- и n-положения, нами были проведены встречные синтезы индивидуальных o-, m- и n-1-фенил-3-толлилиропанов по схеме 6). Эталонные 1-фенил, 3-(o, m, n)- толлилиропаны были выделены с 95-97% чистотой (по данным г.ж.х.) и строение их подтверждено и.-к. спектрами и спектрами я.м.р. (табл. 1).

Не менее активно индан алкилировал толуол (табл. 2, схема 5)). В этом n-1-фенил-3-толлилиропанов по схеме 6). Эталонные 1-фенил, 3-(o, m, n,)-отделялся от o- и n-изомеров на апиезоне L (хроматон, l=3m, 225°, гелий); o-изомер отделялся от m- и n-изомеров на тетрабензоате пента-эритрита (хроматон, l=3m, 195°, гелий).

Все три изомера удалось разделить на капиллярной колонке ($l{=}410$ м,

фаза — полифениловый эфир, 200°, газ-носитель гелий).

Хроматографические данные, полученные для эталонных углеводородов и их искусственных смесей, позволили установить качественный и количественный состав алкилатов (табл. 2).

		Ик. спектр			
Углеводород	⁸ ArH	$\delta_{lpha-{ m CH_2}}$ при $J=7$ гд	[δ _{β-CH2}	$\delta_{\mathrm{CH_3}}$	(v, см ⁻¹) (ха- рактеристика замещения в бензольном кольше)
(CH ₂) ₃ -(O)	7,12 (c)	2,55 (т)	1,87 (M)	Отс.	700, 750,
$(CH_2)_3$	7,02; 7,13	2,37—2,75 (м)	1,33-2,02 (M)	2,20 (c)	700, 750, 740
(CH ₂) ₃ —(CH ₃	7,15; 6,97 (M)	2,58 (т)	1,33-2,02 (M)	2,28 (c)	700, 750, 780
(CH ₂) ₃ -(CH ₃	7,0; 7,13	2,57 (т)	1,33-2,02 (M)	2,27 (c)	700, 750, 820

^{*} Для всех соединений соотношения интегральных интенсивностей ароматических метиленовых и метильных протонов близки к теоретически вычисленным.

Таблица 2 Состав продуктов алкилирования инданом толуола (20% AlBr₃ в расчете на индан; мольное соотношение индана и толуола 1:10; 8 час.) *

	40° C	60° C	80° C		40° C	60° C	80° C
	Конв	ерсия и %	ндана,		Конверсия индана, %		
	35	42	48		35	42	48
1-Фенил-3-м-толил- пропан	$\frac{21}{40}$	$\frac{23}{54}$	25 53	1.3-Дифенилпропан	Сл.	1 2	3 6
1-Фенил-3-<i>п</i>-толи л- пропан	$\frac{14}{60}$	$\frac{18}{44}$	$\frac{11}{23}$	Тяжелые продукты	0	Сл.	5
1-Фенил-3-о-толил- пропан	<u>Сл.</u>	Ол.	$\frac{4}{8}$				10

^{*} Над чертой — выход (в %), под чертой — селективность (в %).

Заметное различие в химических сдвигах протонов CH_3 -групп для о-изомера, с одной стороны, и m- и n-изомеров, с другой (см. табл. 1), дало возможность привлечь спектроскопию я.м.р. для анализа изомерного состава.

Данные спектров я.м.р. продуктов взаимодействия индана и толуола согласуются с хроматографическими и подтверждают, в частности, отсутствие 1-фенил-3-о-толлилиропана в опытах, проведенных при 40°, и появление его в катализате при повышении температуры до 80°.

Экспериментальные результаты, приведенные в табл. 2, свидетельствуют о следующем. В диапазоне температур 40—60° толуол эффективно алкилируется инданом в м- и n-положения, а при 80° заметный вклад приобретает алкилирование в o-положение. С повышением температуры опыта увеличивается общая конверсия индана (так же как и в случае

бензола), изменяется соотношение o-, m- и n-изомеров, увеличивается выход побочных продуктов. Последние, по-видимому, являются следствием деструктивных процессов, о чем свидетельствует присутствие 1,3-дифенилиропана. Следует отметить, что этот углеводород образовывался при температуре опытов ≥40° во всех случаях, когда объектами алкилирования служили алкилбензолы, а также при олигомеризации индана

При алкилировании о-ксилола (80°) конверсия индана составляла 40-50%. Алкилат содержал 1,2,4-тризамещенные производные бензола (820, 885, 1505 cм⁻¹) и 1,3-дифенилиропан (7-10% в расчете на превращенный индан).

Спектры я.м.р. снимались на приборе «Варнан Т-60» А. Ю. Кошевником; и.-к. спектры — на приборе UR-20 В. Д. Оппенгейм.

Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва

Поступило 3 VIĬ 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Топчиев, Е. С. Покровская, Т. Г. Степанцова, ДАН, 119, № 6, 1164 (1958). ² R. D. Bushick, J. Org. Chem., **35**, № 9. 2929 (1970). ³ Н. С. Наметкин, Е. Ш. Финкельштейни др., ДАН, **210**, № 4, 114 (1973).