УДК 547.836.3 ХИМИЯ

Л. Н. ЯХОНТОВ, Р. Г. ГЛУШКОВ, Е. В. ПРОНИНА, В. Г. СМИРНОВА

НОВЫЙ МЕТОД СИНТЕЗА АЗАТРИПТАМИНОВ И АЗАГОМОТРИПТАМИНОВ

(Представлено академиком М. И. Кабачником 6 IV 1973)

Принции создания азааналогов природных и биологически активных соединений является одним из рациональных путей поиска новых лекарственных препаратов. Успехи в области азапуриновых и азапиримидиновых оснований, азааналогов стероидов, алкалоидов, флаваноидов и других свидетельствуют о перспективности такого направления.

Несмотря на большое число работ, посвященных азатриптаминам, этот класс соединений остается малодоступным, так как описанные методы синтеза либо приводят к веществам, содержащим дополнительные заместители $\binom{1}{2}$, либо исходят из трудно получаемых незамещенных азаиндолов $\binom{1}{2}$.

Настоящее сообщение посвящено разработке нового общего метода синтеза азатриптаминов и азагомотриптаминов на основе доступных пиридилгидразинов (3 , 4) и α -енаминов лактамов (5).

$$\begin{array}{c|c} (H_2C)_{\overline{n}} \\ HN \\ \end{array} \\ \begin{array}{c} (H_2C)_{\overline{n}} \\ \end{array} \\ \begin{array}{c} (H_2C)_{\overline{n}} \\ \end{array} \\ \begin{array}{c} (H_2C)_{\overline{n}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (H_2C)_{\overline{n}} \\ \end{array} \\ \begin{array}{c} (H_$$

a)
$$n = 2$$
; $X = N$; $Y = CH$; 6) $n = 2$; $X = CH$; $Y = N$; $n = 3$; $X = N$; $Y = CH$; $Y = N$.

Ранее было показано, что α -енамины лактамов взаимодействуют с арилгидразинами в условиях реакции Фишера с образованием β -карболинов и азепино- (3,4-в)-индолов (5). При взаимодействии енаминов I (а, в) с α - или γ -пиридилгидразинами (IIa, б) в спирте в отсутствие кислых катализаторов оказалось возможным выделить соответствующие пиридилгидразоны α -оксолактамов (III a—r). В случае гидразона IIIв син- и антиизомеры были разделены на основе их различной растворимости в воде и диоксане. В у.-ф. спектре трудно растворимого в воде низкоплавкого син-изомера наблюдается характерный ($^{6-8}$) батохромный сдвиг максимума поглощения на 12 мµ по сравнению с более высокоплавкой кристаллизующейся из диоксана антиформой. Отсутствие существенных различий в дальнейшей циклизации син- и антигидразонов IIIв позволили для остальных соединений избежать получения индивидуальных изомерных форм.

Циклизация пиридилгидразонов α-оксолактамов III (а-г) осуществлялась кратковременным нагреванием с избытком хлорпстого цинка и последующей экстракцией IV (a-r) горячим хлороформом. Следует отметить, что IVв был получен нами ранее (9), но с более низким выходом, также путем сплавления с хлористым цинком 3-метокси-2-оксо-2H, 1,5,6,7-тетра-

гидроазепина и а-пирицилгидразина.

Размыкание лактамных колец в производных аза-β-карболинонов IV (a, б) и азагомо-β-карболинонов IV (в, г) достаточно полно протекало при кипячении в соляной кислоте с образованием соответствующих дигидрохлоридов 3-аминоалкилазаиндол-2-карбоновых кислот, из которых при подщелачивании водных растворов до рН 8 были выделены свободные аминокислоты V (а-г).

Как и следовало ожидать на основании ранее высказанных общих соображений о делокализации л-электронного облака в системе пирролопиридинов (10), декарбоксилирование азаиндол-2-карбоновых кислот потребовало более жестких условий по сравнению с аналогичными процессами для соответствующих индол-2-карбоновых кислот. Вместе с тем аминокислоты V (a - г) легко отщепляли воду, превращаясь в трициклические лактамы IV (a-r). О значении кристаллизационной воды при циклизации такого типа соединений имеются указания в литературе (11). Нами было установлено, что даже хорошо обезвоженные аминокислоты V (имеющие в и.-к. спектре четкую полосу NH₂-группы 3322 см⁻¹ при отсутствии характерной для гидратов аминокислот полосы 1672 см-1 (11)) при кипячении в хинолине с осажденной медью на 87% превращаются в лактамы IV, а при более низких температурах возвращаются неизмененными.

Использование мелкодисперсной электролитически восстановленной меди позволило сдвинуть процесс в сторону декарбоксилированных соединений — азатриптаминов (VI a, б) и азагомотриптаминов (VI в, г). Для подтверждения строения 5-азатриптамина (VI б) последний был получен также независимым синтезом из 5-азаиндола через 5-азаиндолил-3-апетонитрил (12) с каталитическим восстановлением последнего. В ходе синтезов использовались следующие общие методы. При получении III (a-r) 50 ммол I и 60 ммол II кипятили в 50 мл абсолютного этанола, упаривали в вакууме, остаток перетирали с эфиром и нерастворившийся III перекристаллизовывали из подходящего растворителя. При циклизации III (а-г) 11 ммол гидразона III и 45 ммол плавленого хлористого цинка помещали

Таблица 1

Соединение	Формула	Выход, %	Т. пл., °С*	Найдено, %			Вычислено, %		
				C	н	N	С	н	N
IIIa III6	C ₁₀ H ₁₂ N ₄ O	42	186—188			27,81 27,80	58,82	5,88	27,46
IIIO IIIв (анти) IIIв(син <u>)</u> IIIr	C ₁₁ H ₁₄ N ₄ O	85 84	199-200,5 181-182 129-131 190-190,5	59,16 60,73 60,80 60,17	6,35	25,35 25,40 26,13	60,56	6,42	25,69
IVa IVő	C ₁₀ H ₉ N ₃ O	82 74	268—269 разл. 300 разл.	64,24 63,89	4,91	22,03 22,50	64,16	4,84	22,45
IVB IVT Va V6-2HCl VB-2HCl VICO VIO ФОСФАТ VIO ПИКРАТ VIB-2HCl VIB ПИКРАТ	C ₁₁ H ₁₁ N ₁ O ₂ · ½ H ₂ O C ₁₀ H ₁₁ N ₁ O ₂ · ½ H ₂ O C ₁₀ H ₁₁ N ₁ O ₂ · 2HCl C ₁₁ H ₁₃ N ₃ O ₂ · 2HCl C ₁₁ H ₁₃ N ₃ O ₂ · 2HCl C ₆ H ₁₁ N ₃ · 2H ₃ PO ₄ C ₆ H ₁₁ N ₃ · 2C ₆ H ₂ N ₃ O ₇ C ₁₀ H ₁₃ N ₃ · 2C ₆ H ₂ N ₃ O ₇ C ₁₀ H ₁₃ N ₃ · 2C ₆ H ₃ N ₃ O ₇	100 80 84 94 87 100 79	300 pasn. 300 pasn. 267 pasn. 300 pasn. 259 pasn. 300 pasn. 180 pasn. 240—241 pasn. 223—224 227—228 pasn.	65,65 65,49 55,70	5,35	20,89 20,95 19,98	65,67 56,06	5,47 5,64	20,90
				48,32	4,70 2,73 6,24	14.68*** 11,82*** 20,48 16,14*** 19,37	45,20 30,95 40,71 48,38 41,71	5,14 4,76 2,75 6,09 3,02	14,38 11,76 20,36 16,93 19,90

* Вещества III б, г и пикраты VI б, в перекристаллизованы из воды; IIIв (син- и анти) — из этилацетата; IIIа — из диоксана; IVa, в и VIв. HCl — из спирта; IV б, г — из метанола.

*** Вещества без анализа использовались на следующей стадии.

*** Для Vr. 2HCl найдено %: Cl 24,37; вычислено %: Cl 24,32; для VIб найдено %: P 17,00; вычислено %: Cl 28,60.

в баню со сплавом Вуда при 180° и нагревали с периодическим перемешиванием до 200-210°. Реакция протекала со значительным выделением тепла (баню опускали) и заканчивалась в течение нескольких минут. Реакционную массу выперживали еще 5-10 мин, при 230-240°, охлаждали до 40° и растворяли в 200 мл нагретой 18% соляной кислоты. Солянокислый раствор подщелачивали аммиаком до рН 9 и IV экстрагировали горячим хлороформом. Для раскрытия лактамного кольца 3 ммол ÎV кипятили 5 час. с 10 мл 24% соляной кислоты и реакционную массу оставляли на ночь в холодильнике. Осадок гидрохлорида V отфильтровывали, растворяли в четырехкратном количестве воды и подщелачивали насыщенным раствором едкого натра до рН 8, выделившиеся кристаллы V отфильтровывали. При декарбоксилировании 6 ммол V тщательно высушивали в вакууме до исчезновения в и.-к. спектре полосы 1672 см-1 и перемешивали с 1 г электролитической меди, двумя порциями прибавляли 20 мл кипящего хинолина и нагревали при 195—205° до прекращения выделения CO₂, после чего кипятили еще 5 час., фильтровали, упаривали в вакууме, остатки хинолина отгоняли с паром, продукты декарбоксилирования (VI) извлекали спиртом и переводили в хорошо поддающиеся очистке соли.

Встречный синтез 5-азатриптамина (VIб): 12 ммол 5-азаиндолил-3-ацетонитрила гидрировали 4 часа с 0,5 г скелетного никелевого катализатора в 100 мл 20% метанольного аммиака при 80° и начальном давлении водорода в автоклаве 25 атм. После отделения катализатора и отгонки метанола остаток растирали с ацетоном, отделяли никельсодержащий комплекс и из ацетонового раствора выделяли с выходом 67% дифосфат VIб. Константы, выходы и данные анализа синтезированных соединений приве-

дены в табл. 1.

Всесоюзный научно-исследовательский химико-фармацевтический институт им. С. Орджоникидзе Москва

Поступило 24 III 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. Н. Яхонтов, Усп. хим., 37, 1258 (1968). ² И. И. Гранберг, Н. Г. Ярышев, Хим. гетероциклич. соед., № 8, 1070 (1972). ³ Н. Gregory, L. F. Wiggins, J. Chem. Soc., 1949, 2546. ⁴ Л. Н. Яхонтов, М. Ф. Маршалкин, О. С. Анисимова, Хим. гетероциклич. соед., № 4, 508 (1972). ⁵ Р. Г. Глушков, В. А. Волскова и др., ДАН, 187, 327 (1969). ⁶ R. Abramovitch, J. Spenser, J. Chem. Soc., 1957, 3767. ⁷ М. Н. Преображенская, Н. В. Уварова и др., ДАН, 148, 1088 (1963). ⁸ Л. Б. Шагалов, В. Н. Ераксина и др., Журн. орг. хим., 8, 2310 (1972). ⁹ Р. Г. Глушков, Л. Н. Яхонтов и др., Хим. гетероциклич. соед., № 3, 564 (1969). ¹⁰ Л. Н. Яхонтов, В. А. Азимов, ДАН, 192, 583 (1970). ¹¹ S. Ріеtга, G. Тассопі, Farmaco, Pavia, 19, 741 (1964). ¹² Л. Н. Яхонтов, Е. И. Лалиан, Хим. гетероциклич. соед., 1528 (1972).