УДК 517.54

MATEMATUKA

Ф. Г. АВХАДИЕВ, Л. А. АКСЕНТЬЕВ

ФУНКЦИИ КЛАССА БАЗИЛЕВИЧА В КРУГЕ И КОЛЬЦЕ

(Представлено академиком С. М. Никольским 14 V 1973)

В статье рассматривается класс функций И. Е. Базилевича $B_{\alpha,\,\beta}$, $\alpha > 0$, $|\beta| < \infty$. Дается расширение этого класса на случай $-1/2 \le \alpha \le 0$, указывается новое представление, устанавливающее простую связь между $B_{a,\, b}$ и почти выпуклыми функциями. Даются также распространение класса $B_{\alpha,\beta}$ на кольцо, различные частные случаи и применения. 1. Пусть α , $\alpha \ge -1/2$, β и a—вещественные постоянные. Функция

 $g(z) \subseteq S^*$, T. e.

$$g(z) = z + c_2 z^2 + \dots, |z| < 1,$$

причем g(z) однолистно отображает |z| < 1 на область, звездную относительно начала координат. Функция p(z) регулярна в единичном круге $|\arg p(z)| \le 1/2\pi [1+\alpha (1-\text{sign})]$ и

$$p(z) = 1 + ai + a_1 z + a_2 z^2 + \dots, |z| < 1.$$

Будем считать, что $f(z) \in B_{\alpha, \beta}$, если

$$f(z) = \left[\frac{\alpha + i\beta}{1 + \alpha i} \int_{z_0}^{z} p(s) s^{-1 + i\beta} g^{\alpha}(s) ds + C\right]^{1/(\alpha + i\beta)}, \quad |z_0|, \quad |z| < 1, \tag{1}$$

где постоянная C подбирается из условия

$$f(z) = z + b_2 z^2 + \dots, |z| < 1.$$

Имеем

$$(1+ai) C = p(z_0) g^{\alpha}(z_0) z_0^{i\beta} - \int_0^{z_0} [(g(t)/t)^{\alpha} p(t)]' t^{\alpha+i\beta} dt.$$

Отметим, что для $\alpha > 0$ можно взять $z_0 = 0$, C = 0, но при $-1/2 \le \alpha \le 0$ под знаком интеграла в (1) появляется неинтегрируемая особенность в точке s=0, поэтому $z_0\neq 0$.

И. Е. Базилевич (4 , 2) установил, что при $\alpha>0$ ($z_0=C=0$) функции вида (4) являются однолистными. Недавно Д. В. Прохоров (3) (для частного случая $\beta = 0$) и Шейл (4) доказали эквивалентность класса $B_{\alpha,\beta}$ с α>0 и класса функций, которые характеризуются условием

$$\int_{\theta_i}^{\theta_2} \operatorname{Re}\Phi\left(re^{i\theta}\right) d\theta > -\pi, \quad 0 < r < 1; \tag{2}$$

здесь $0 < \theta_2 - \theta_4 < 2\pi$.

$$\Phi(z) = 1 + zf''(z)/f'(z) + (\alpha - 1 + i\beta)zf'(z)/f(z)$$
(3)

и дополнительно предполагается, что

$$f(z)f'(z)/z \neq 0, |z| < 1.$$
 (4)

В (3) и (4) построено новое доказательство однолистности функций f(z) при условиях (2)-(4), когда $\alpha>0$. Отметим, что это доказательство проходит для любых вещественных α . Однако при $\alpha < -1/2$ условие (2) не будет содержательным. В самом деле, для любого $\alpha < -1/2$ имеем

$$\int_{0}^{2\pi} \operatorname{Re}\Phi\left(re^{i\theta}\right) d\theta = 2\pi\alpha < -\pi,$$

и поэтому для любой регулярной функции f(z), условие (2) будет нарушено при $\theta_2 - \theta_1 \ge 2\pi - \varepsilon$, где $\varepsilon = \varepsilon(\alpha, \hat{f})$ достаточно мало.

Учитывая также то, что эквивалентность классов $B_{\alpha,\beta}$ и (2) – (4) со-

храняется и при $-1/2 \le \alpha \le 0$, приходим к следующему утверждению.

Tеорема 1. Функции класса $B_{\alpha,\beta}$, имеющие представление (1), од-

нолистны в |z| < 1 при $\alpha \ge -1/2$.

Необходимо указать, что при $\alpha+i\beta=0$ нужно пользоваться представлением

$$f(z) = \exp\left(\frac{1}{1+ai} \int_{z_0}^{z} \frac{p(s)}{s} ds + C\right), \quad C = \frac{p(z_0) \ln z_0 - \int_{0}^{z_0} p'(t) \ln t \, dt}{1+ai},$$
(1₀)

которое получается из (1) предельным переходом при $\alpha + i\beta \rightarrow 0$.

2. Пользуясь условием (2), можно получить множество эквивалентных представлений для функции f(z). Самым простым из них будет представление

$$f(z) = [\varphi(z)]^{1/(\alpha+i\beta)} = [z^{\alpha+i\beta}\psi(z)]^{1/(\alpha+i\beta)} = z + b_2 z^2 + \dots, \quad \alpha+i\beta \neq 0,$$
 (5)

в котором $\psi(z)$ — регулярная в круге |z| < 1 функция,

$$\psi(z) = 1 + c_1 z + c_2 z^2 + \dots, \quad \psi^{1/(\alpha + i\beta)}(0) = 1, \tag{6}$$

а функция $\phi(z)$ удовлетворяет условию (2) при

$$\Phi(z) = 1 + z \varphi''(z) / \varphi'(z).$$

Если $\alpha + i\beta = 0$, то (5) нужно заменить представлением

$$f(z) = \exp \varphi(z) = z\psi(z). \tag{5_0}$$

Теорема 1 равносильна следующему утверждению.

Теорема 1'. Функции (5), (5_0) при выполнении условий (4), (6) и неравенства

$$\int_{\theta_{1}}^{\theta_{1}} \operatorname{Re}\left(1+z\frac{\varphi''(z)}{\varphi'(z)}\right) d\theta > -\pi, \quad z = re^{i\theta}, \quad 0 < \theta_{2} - \theta_{1} < 2\pi, \tag{7}$$

для функции $\varphi(z) = \{z^{\alpha+i\beta}\psi(z), \alpha+i\beta\neq 0; \ln[z\psi(z)], \alpha+i\beta=0\}$ являются

однолистными в круге |z| < 1 при $\alpha \ge -1/2$.

Теорему 1' можно доказать и геометрически, рассматривая функцик $\varphi(z)$ в круге |z|<1 с разрезом по отрезку [0,1]. В силу условия (7), об разом окружности |z|=r<1 без точки z=r при отображении функцие $\varphi(z)$ будет простая незамкнутая почти выпуклая кривая, лежащая на римановой поверхности функции $w^{1/(\alpha+i\beta)}$. Отсюда легко получается одноли стность f(z), если представление (5) переписать в виде

$$f(z) = \left[\varphi(z)^{1/[n(\alpha_0 + i\beta_0)]} = \left[z^{\alpha_0 + i\beta_0}\right]^{n} \overline{\psi(z)}\right]^{1/(\alpha_0 + i\beta_0)}, \tag{5'}$$

где n — целое число, а $|\alpha_0| \le 1$, и воспользоваться следующим геометрическим фактом.

 \exists Регулярная в |z| < 1 функция f(z) вида (5') будет однолист ной, если образом окружности |z| = r, 0 < r < 1, без точки z = r при отобре

$$(\varphi(z))^{1/n} = z^{\alpha_0 + i\beta_0} (\psi(z))^{1/n}$$

окажется простая кривая, не выходящая за пределы бесконечного сектора

с раствором $2\pi |\alpha_0|$ и с вершиной в начале координат.

Пусть D_f —образ |z|<1 при отображении функцией f(z). Обозначим через $L_{\alpha,\beta}$ класс регулярных и однолистных в |z|<1 функций f(z) таких, что область D_f , если $\alpha<0$, или дополнение D_f до полной плоскости, если $\alpha>0$, может быть покрыто семейством кривых w=w(t) вида

$$w=w(t)=a(1+bt)^{1/(\alpha+i\beta)}, \quad t>0.$$

Пусть $\overline{L}_{\alpha,\beta}$ — замыкание $L_{\alpha,\beta}$.

На основании известного факта о совпадении класса почти выпуклых функций с классом $L_{1,0}$ (см. (5)), с использованием представления (5) при условии (7), получается

Tеорема 2. Классы $B_{\alpha,\beta}$ и $\overline{L}_{\alpha,\beta}$ эквивалентны $(\alpha \geqslant -1/2)$.

Для случая $\beta=0$, $\alpha>0$ этот результат доказан Д. В. Прохоровым (3). Теорема 2 дает возможность сравнения классов $B_{\alpha,\beta}$ при различных α и β . Справедливо, например,

Следствие. Классы $B_{\alpha,0}$ существенно различны при различных α , τ . е. существует такая функция $f_{\alpha'}(z) \in B_{\alpha',0}$, что $f_{\alpha'}(z) \not\in B_{\alpha,0}$ для любого

 $\alpha \neq \alpha'$.

3. Распространим теорему 1 на кольцо q < |z| < 1. Пусть в этом кольце задана регулярная функция f(z), которая конформно отображает кольцо на двусвязную область, причем окружности |z| = q соответствует внутренняя граница, а окружности |z| = 1—внешняя и выполняются условия

$$\lim_{|z| \to q} \int_{0}^{2\pi} \left(1 + z \frac{f''(z)}{f'(z)} \right) d\theta = \lim_{|z| \to q} \int_{0}^{2\pi} z \frac{f'(z)}{f(z)} d\theta = 2\pi, \quad f'(z) f(z) \neq 0.$$
(8)

Образуем по f(z) две функции

$$\Phi_{l}(z) = 1 + z \frac{f''(z)}{f'(z)} + (\alpha_{l} - 1 + i\beta_{l}) z \frac{f'(z)}{f(z)}, \quad l = q, 1.$$
(9)

Справедлива

Теорема 3. Регулярная функция f(z) будет однолистной в кольце q<|z|<1, если выполняются условия (8) и неравенства

$$\lim_{|z| \to q} \left[\operatorname{Re} \, \Phi_q(z) \, \operatorname{sign} \, \alpha_q \right] > 0, \tag{10}$$

$$\int_{\theta_1}^{\theta_2} \text{Re } \Phi_1(z) d\theta > -\pi, \quad 0 < \theta_2 - \theta_1 < 2\pi, \quad q < |z| < 1, \tag{11}$$

где функции $\Phi_q(z)$ и $\Phi_1(z)$ определяются по формулам (9), $\alpha_1 \geqslant -1/2$ и α_q — любое вещественное число.

Наметим схему доказательства. Простота внутренней границы области значений функции f(z) следует из того, что функция

$$\varphi_q(z) = f^{\alpha_q + i\beta_q}(z), \quad \alpha_q + i\beta_q \neq 0,$$

будет удовлетворять условию выпуклости в достаточно узком кольце $q\!<\!|z|\!<\!q\!+\!\varepsilon.$ Поэтому тем более будет справедливо соотношение

$$\operatorname{Re} z \frac{\varphi_q'(z)}{\varphi_q(z)} = \operatorname{Re} \left[(\alpha_q + i\beta_q) z \frac{f'(z)}{f(z)} \right] \ge 0, \quad \alpha_q \ge 0, \quad q < |z| < q + \varepsilon.$$

Простота внешней границы доказывается по аналогии с геометрическим доказательством теоремы 1'.

В пределе при $q \to 0$ получим расширенный класс Базилевича $B_{\alpha, \beta}$,

 $\alpha \ge -1/2$, B RPyre |z| < 1.

Заметим также, что теорема остается справедливой, если неравенство (10) заменить каким-либо другим условием, обеспечивающим простоту

внутренней границы.

4. В рассмотренных классах функций содержатся n-симметричные однолистные функции в круге, внешности круга и круговом кольце. Например, при $\alpha=\pm 1/n$, $\beta=0$ с помощью замен $f_n(z)=(f(z^n))^{1/n}$ или $F_n(\zeta)==(f(\zeta^{-n}))^{-1/n}$ возникают достаточные условия однолистности

$$\int_{\theta_{I}}^{\theta_{2}} \operatorname{Re}\left(1+z\frac{f_{n}''(z)}{f_{n}'(z)}\right) d\theta > -\pi, \quad \int_{\theta_{I}}^{\theta_{2}} \operatorname{Re}\left(1+\zeta\frac{F_{n}''(\zeta)}{F_{n}'(\zeta)}\right) d\theta < \pi, \quad (12)$$

где $z{=}re^{i\theta},\,0{<}r{<}1,\,\xi{=}\rho e^{i\theta},\,1{<}\rho{<}\infty,\,0{<}\theta_2{-}\theta_1{<}2\pi/n,\,$ причем

$$f_n(z) = z + a_{n+1}z^{n+1} + a_{2n+1}z^{2n+1} + \dots$$

регулярна в |z| < 1, а

$$F_n(\zeta) = \zeta + \frac{b_{n-1}}{\zeta^{n-1}} + \frac{b_{2n-1}}{\zeta^{2n-1}} + \dots$$

регулярна в области 1< | ζ | <∞.

Условиями однолистности таких функций и применением их к обратным краевым задачам (⁶, ⁷) теории аналитических функций занимались В. Н. Гайдук и В. П. Микка (⁸).

По аналогии с нашей статьей (°) можно описать условие однолистности (2) по областям в плоскости $\Phi(z)$ с применением подчиненных функций.

Казанский государственный университет им. В. И. Ульянова-Ленина

Поступило 20 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. Е. Базилевич, Матем. сборн., 37, 3, 471 (1955). ² И. Е. Базилевич, Матем. сборн., 64, 4, 628 (1964). ³ Д. В. Прохоров, Матем. заметки, 11, № 5, 509 (1972). ⁴ Т. Sheil-Small, Quart. J. Math., 23, № 90, 135 (1972). ⁵ А. Віе-lecki, Z. Lewandowski, Ann. Pol. Math., 12, № 1, 61 (1962). ⁶ Г. Г. Тумашев, М. Т. Нужин, Обратные краевые задачи, Казань, 1965. ⁷ Ф. Д. Гахов, Краевые задачи, М., 1963. ⁸ В. Н. Гайдук, Тр. семин. по краевым задачам, Казань, в. 8, 1971, стр. 55. ⁹ Ф. Г. Авхадиев, Л. А. Аксентьев, ДАН, 211, № 1 (1973).