УДК 519.212.3

MATEMATUKA

Р. В. АМБАРЦУМЯН

О СЛУЧАЙНЫХ ПОЛЯХ ВОЛОКОН В \mathbb{R}^n

(Представлено академиком A. Н. Колмогоровым 10 IV 1973)

Как по результатам, так и по методике, настоящая заметка примыкает

к работам автора (1-3).

Ниже всегда G_n есть класс гиперплоскостей в R^n , \mathcal{B}_g — класс ограниченных борелевских подмножеств данной $g \in G_n$. Рассматриваются случайные процессы вида $N(B,\omega)$, где N — неотрицательное целое число, B принадлежит $\bigcup \mathcal{B}_g$, ω — элементарное случайное событие.

В теории случайных множеств в R^n интерес представляют случайные процессы $N(B,\omega)$, которым соответствует случайное множество $\mathfrak{m}(\omega) \subset R^n$ такое, что с вероятностью 1 $N(B,\omega)$ равно числу изолированных точек в $\mathfrak{m}(\omega) \cap B$.

Вопрос о нахождении условий существования таких $\mathfrak{m}(\omega)$ в настоящей заметке не затрагивается, и поэтому существование $\mathfrak{m}(\omega)$ с некоторыми желаемыми свойствами постулируется. Такой подход равнозначен рассмотрению случайных величин со значениями в некотором специально выбранном измеримом пространстве (\mathfrak{M}_n , \mathscr{A}), к построению которого мы и переходим.

Начнем с интегрально-геометрического определения волокна в R^n . Предположим, что в R^n задано множество L, являющееся гладким взаимно однозначным образом открытого интервала. Через s будем обозначать координату на L, пропорциональную расстоянию вдоль L.

Пусть $K_r = K_r(\mathcal{P}, g)$ есть (n-1)-мерный «круг» радиуса r с центром в $\mathcal{P} \subseteq g$, лежащий на $g \subseteq G_n$, $d\mathcal{P}$ – элемент (n-1)-мерной площади на g, dg — элемент инвариантной (относительно эвклидовых движений R^n) меры на G_n , dK — элемент кинематической меры положений K_r в R^n . Имеем

$$dK = dg \, d\mathcal{P} = \cos v \, ds \, d\Omega \, d\mathcal{P}$$
,

так как $\cos v \, ds \, d\Omega$ есть выражение dg в координатах (s,Ω) , где Ω — направление нормали к $g, \, d\Omega$ — элемент (n-1)-мерной площади на единичной сфере в R^n , v— угол между Ω и касательной к L в точке $s=L\cap g$.

Фиксируем *s* таким образом, чтобы в соответствующей точке L существовала кривизна $\varkappa(s)$. Нетрудно устанавливается, что при $r \rightarrow 0$

$$\int I_L \cos v \, d\Omega \, d\mathcal{P} = C_n \varkappa^2(s) \, r^{n+1} + o\left(r^{n+1}\right); \tag{1}$$

здесь и ниже функция $I_{\mathfrak{m}}=1$, если K_r имеет больше одной точки пересечения с множеством $\mathfrak{m} \subset \mathbb{R}^n$, $I_{\mathfrak{m}}=0$ в противном случае, C_n — константа, зависящая только от размерности n.

Формальным интегрированием (1) вдоль L получаем

$$\int I_L dg d\mathcal{P} = \frac{C_n}{2} r^{n+1} \int_L \kappa^a ds + o(r^{n+1}).$$
 (2)

Волокном (в R^n) назовем конечной длины $L \subset R^n$, для которого выполняется асимптотическое равенство (2).

Полем волокон назовем такое множество $\mathfrak{m} \subset \mathbb{R}^n$, пересечение ко торого с каждым открытым шаром в \mathbb{R}^n можно представить в виде конеч ного числа непересекающихся волокон, концы которых не принадлежат \mathfrak{m}

Через \mathfrak{M}_n обозначим класс всех полей волокон в R^n , через \mathscr{A} — мини мальную σ -алгебру, относительно которой множества $\{\mathfrak{m} \in \mathfrak{M}_n; \ N(B,\mathfrak{m}) \ge k$, где $N(B,\mathfrak{m})$ равно числу изолированных точек в $\mathfrak{m} \cap B\}$ измеримы дли каждого $k \ge 0$ и $B \in \cup \mathcal{B}_g$.

Случайным полем волокон в R^n назовем измеримое отображение $\mathfrak{M}(\omega)$ какого-либо вероятностного пространства (ω — элемент пс следнего) в $(\mathfrak{M}_n, \mathscr{A})$.

Распределением случайного поля волокон $\mathfrak{m}(\omega)$ назовем инду

цированную случайным полем $\mathfrak{m}(\omega)$ меру P на \mathscr{A} .

Пусть \mathcal{A}_{P} — обычное расширение $\mathcal A$ относительно меры P и

$$\mathcal{A}_0 = \cap \mathcal{A}_P$$

пересечение берется по всем распределениям случайных полей волоко в $R^n.$

Обозначим через \mathcal{M}_n группу всех эвклидовых движений R^n .

Случайное поле волокон $m(\omega) \subset R^n$ называется однородным изотропным, если распределение $Mm(\omega)$ не зависит от $M \in \mathcal{M}_n$ (в это случае пишем $P \in \mathcal{I}$). Здесь и ниже Mm—образ множества m при движнии M.

Обозначим через ${\mathscr B}$ класс борелевских подмножеств ${\mathscr M}_n$.

Лемма 1. Для каждого А∈А функция

$$I_A\left(M\mathfrak{m}
ight) = egin{cases} 1, & \emph{если} & M\mathfrak{m} \in A, \ 0 & \emph{в} & \emph{противном} & \emph{случае} \end{cases}$$

измерима относительно $(\mathfrak{M}_n \times \mathcal{M}_n, \mathcal{A}_0 \times \mathcal{B}_0)$.

Эта лемма служит обоснованием интегрально-геометрического метод

применяемого в настоящей заметке, а также в $\binom{1-3}{2}$.

 Π емма 2. Eсли $\mathfrak{m}(\omega)$ — однородное и изотропное случайное поле в локон в R^n , то $\mathfrak{m}(\omega) \cap g$ является случайным точечным полем (или точе

ным процессом, см. (1)) на g для любой $g \in G_n$.

Узлом поля волокон $\mathbb{m} \in \mathbb{M}_n$ назовем точку $Q \in \mathbb{R}^n$, которая принадл жит замыканию больше чем одного волокна, причем $[Q \cup \mathbb{m}] \not \in \mathbb{M}_n$. Кажду узел Q характеризуется фигурой, которую образуют исходящие из Q касательным к волокнам в точке Q направлениям лучи. Так, в случ $\mathbb{m} \in \mathbb{M}_2$ мы будем выделять узлы аффинно неэквивалентные типов X, Y, T (фигура X образована пересечением двух прямых).

Обозначим через q класс узлов, для которых упомянутые выше лу попарно совпадают. Положим $\Delta_u(\mathscr{P}) = \{K_r;$ центр K_r принадлеж

 $S(u, \mathcal{P})$ }, $S(u, \mathcal{P})$ — шар радиуса u с центром в \mathcal{P} .

Лемма 3. Пусть Q— узел поля волокон $\mathfrak{m} \in \mathfrak{M}_n$. Если Q— единство ный узел \mathfrak{m} в S(u,Q), то

$$\lim_{\tau\to 0}r^{-n}\int_{\Delta_{\mathfrak{u}}(Q)}I_{\mathfrak{m}}\,dK=\alpha(Q),$$

причем

$$0 < \alpha(Q) < \infty$$
, ecau $Q \in q$, $\alpha(Q) = \infty$, ecau $Q \neq q$.

Следствием леммы 3 является следующее предельное соотношен

$$\lim_{r\to 0} r^{-n} \int_{\Delta_u(O)} I_{\mathfrak{m}} dK = \sum_{Q_t \in S(u,O)} \alpha(Q_i),$$

где O- начало координат в R^n .

Предположим, что задано случайное поле волокон $\mathfrak{m}(\omega) \subset \mathbb{R}^n$, P- его распределение. Проинтегрируем (3) по мере P, используя символ E для обозначения математического ожидания.

По теореме Фату и Фубини получаем

$$E\sum_{Q_i \in S(u,O)} \alpha(Q_i) \leq \underline{\lim}_{r \to 0} r^{-n} \int_{\Delta_u(O)} [EI_{\mathfrak{m}}] dK.$$

Если $P \in \mathcal{I}$, то тождественно по K

$$EI_{m(\omega)} = p(r)$$
,

где p(r) — вероятность того, что в (n-1)-мерном круге радиуса r на (любой) $g = G_n$ появится больше, чем одна точка пересечения $g = \mathfrak{m}(\omega)$. Положим

$$\int_{\Delta_u(O)} dK = c_n u^n,$$

 c_n — константа, зависящая только от размерности n, после чего получаем

$$\underline{\lim_{r\to 0}} r^{-n} p(r) \geqslant c_n^{-1} u^{-n} E \sum_{Q_i \in S(u,0)} \alpha(Q_i).$$

Следствие 1. Если $P \in \mathcal{F}$ и $p(r) = o(r^n)$, то с вероятностью 1 $\mathfrak{m}(\omega)$ не образует узлов в R^n .

В качестве стандарта будем рассматривать случай, когда на (любой) $g = G_n$ возникает пуассоновское точечное поле пересечений $\mathfrak{m}(\omega) \cap g$. В этом случае

$$p(r) = O(r^{2(n-1)}),$$

откуда следует, что условие следствия 1 в этом случае выполняется при $n \ge 3$.

При n=2 и пуассоновском $\mathfrak{m}(\omega) \cap g$ $p(r)=O(r^2)$ и, как показывают примеры в $(^2)$ и $(^3)$, $\mathfrak{m}(\omega)$ может образовывать узлы. Однако анализ, проведенный в этих работах, показывает, что с вероятностью 1 $\mathfrak{m}(\omega)$ в этом случае может образовывать лишь узлы типов X, Y, V и T.

Предположим, что фиксировано не образующее узлов т∈ m_n. В этом

случае из (1) вытекает, что

$$\lim_{r \to 0} r^{-(n+1)} \int_{\Delta_n(0)} I_m dK = \sum_{L_t \subset S(u,0)} \int_{L_t} \kappa^2 ds.$$
 (4)

Если предположить, что $P{\in}\mathcal{J}$ такова, что

$$P\{\mathfrak{m} \mid \mathfrak{m} \in \mathfrak{o}$$
бразует узлов в $R^n\}=1$,

то (4) можно проинтегрировать относительно P.

Аналогично предыдущему получаем

$$\lim_{r\to 0} r^{-(n+1)} p(r) \ge C_n^{-1} u^{-n} E \sum_{L_t \in S(u,0)} \int_{L_t} \kappa^2 ds.$$

Следствие 2. Если $P = \mathcal{I}$ и $p(r) = o(r^{n+1})$, то $\mathfrak{m}(\omega)$ с вероятностью 1 состоит из прямолинейных волокон.

В частности, при пуассоновском точечном поле $m(\omega) \cap g$, $g \in G_n$, следствие 2 гарантирует прямолинейные волокна при $n \ge 4$.

В заключение сформулируем наиболее наглядные результаты в виде

теоремы.

Теорема. Пусть $\mathfrak{m}(\omega)$ — однородное и изотропное поле волокон в R^n такое, что $\mathfrak{m}(\omega)$ $\cap g$ есть пуассоновское точечное поле на $g \in G_n$. Тогда с вероятностью 1:

1) $npu \ n=2 \ m(\omega)$ образует лишь узлы $X, Y, T \ u \ V;$

2) $npu \ n \ge 3$ $\mathfrak{m}(\omega)$ не образует узлов;

3) при $n \ge 4$ $m(\omega)$ имеет лишь прямолинейные волокна.

Отметим, что легко построить примеры $\mathfrak{m}(\omega)$, удовлетворяющие условию теоремы и имеющие лишь прямолинейные волокна при всех $n \ge 2$. Однако у нас отсутствуют примеры соответствующих $\mathfrak{m}(\omega)$ с криволинейными волокнами при n=2,3.

Институт математики Академии наук АрмССР Ереван Поступило 24 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. V. Ambartzumian, Palm Distributions and Superpositions of Independent Point Processes in Rⁿ. Stochastic Point Processes: statistical Analysis, Theory and Applications, Interscience, 1972. ² R. V. Ambartzumian, Proc. VI Berkeley Symposium on Probability and Math. Statistics, 3, 1972. ³ P. B. Амбар цумян, Теор. вероятн. ж ее применения, № 3, 1973.