УДК 513.831

MATEMATUKA

Г. П. АМИРДЖАНОВ, Б. Э. ШАПИРОВСКИЙ

О ВСЮДУ ПЛОТНЫХ ПОДМНОЖЕСТВАХ ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ

(Представлено академиком П. С. Александровым 8 V 1973)

Пусть X — топологическое пространство, $A \subseteq X$, ξ — семейство подмножеств из X и τ — кардинальное число. Положим

$$\xi^{\tau} = \{B: B = \cap \{C: C \in \xi'\}, \ \xi' \subset \xi, \ |\xi'| \leq \tau\},$$
$$\xi_{\tau} = \{B: B = \cup \{C: C \in \xi'\}, \ \xi' \subset \xi, \ |\xi'| \leq \tau\}.$$

Через c(X), t(X), s(X), $\pi w(X)$ и w(X) обозначаются число Суслина, теснота (3), плотность, π -вес (4) и вес пространства X соответственно, через $\psi(B,X)$ и $\chi(B,X)$ — псевдохарактер и характер множества B в X соответственно.

Будем говорить, что семейство п плотно относительно семейства \$, если для всякого непустого $A = \xi$ существует непустое $B = \eta$, для которого B = A. Назовем семейство ξ π -сетью в X, если ξ плотно относительно семейства всех открытых в X множеств. Таким образом, $\gamma - \pi$ -база в X' (4), если $\gamma-\pi$ -сеть в X', состоящая из открытых в X' множеств. Будем говорить также, что $\eta-$ сеть относительно семейства ξ , если для всякого $A\!\in\!\xi$ и всякого $x \in A$ существует $B \in \eta$ такое, что $x \in B \subset A$. Следовательно, ζ — сеть в X (1), если ζ — сеть относительно семейства всех открытых в X множеств.

С помощью (6) легко получаем

Утверждение 1. Пусть $X-T_2$ -пространство точечно-счетного типа. Тогда семейство всех бикомпактов счетного характера является сетью относительно семейства всех $G_{\mathfrak{d}}$ -множеств из X.

Утверждение 2. Пусть у $-\pi$ -база в X и A - нигде не плотное в

Х множество.

Tогда существует дизъюнктное семейство $\gamma' \subseteq \gamma$ такое, что $U = \cup \{U: U \in \gamma\}$ всюду плотно в X и $A \subseteq X \setminus U$.

Tеорема 1. Пусть $X-T_2$ -пространство точечно-счетного типа и ξ — сеть в X.

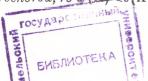
 $Tor\partial a\ w(X) \leq |\xi|^{\aleph_0}$.

Доказательство. Положим $\xi = \{[A]: A \in \xi^{\aleph_0}\}$. Тогда в силу утверждения 1 $\xi = \{H \in \xi : \text{ существует бикомпакт } F_H \text{ счетного характера} \}$ такой, что $H \subset F_H$ — сеть в X. Поскольку $X - T_2$ -пространство, то семейство $\{X \setminus [A]: A = \xi\}$ является исевдобазой в X для всякого бикомпакта H = X. Следовательно, если $H = \xi$, то $\chi(H, F_H) = \psi(H, F_H) \leqslant \psi(H, X) \leqslant |\xi|$, и так как $\chi(H, X) \leq \chi(H, F_H) \chi(F_H, X)$ (6), то $\chi(H, X) \leq |\xi|$. Для всякого H \in ξ зафиксируем γ_H — базу H в X, для которой $|\gamma_H| \leq |\xi|$. Нетрудно проверить, что $\gamma = \cup \{\gamma_H: H \in \zeta\} - 6$ аза в X и $|\gamma| \leq |\xi| |\zeta| \leq |\xi| \leq |\xi| \approx \epsilon$

T е о р е м а 2. Пусть $X-T_2$ -пространство точечно-счетного типа. Тог- $\partial a\ w(X) \leqslant s(X)^{t(X)}$.

Доказательство. Пусть [S]=X и |S|=s(X). Положим $\eta=\{[A]:$ $A \subset S$, $|A| \leq t(X)$. Легко показать, используя утверждение 1, что $\xi = \eta^{\aleph_0}$ сеть в X. Но тогда по теореме 1 $w(X) \le |\xi|^{\kappa_0} \le |\eta|^{\kappa_0} \le s(X)^{\iota(x)}$. Следствие 1. Если $X-T_2$ -пространство точечно-счетного типа со

счетной теснотой, то $w(X) \leq s(X)$



Утверждение 3. Пусть всякое нигде не плотное в X множество сепарабельно и кроме того выполняется хотя бы одно из следующих условий: а) X не содержит изолированных точек; б) $c(X) \leq \aleph_0$. Тогда $c(A) \leq \aleph_0$

 $u s(A) \leq \aleph_1 \partial \Lambda \mathfrak{g}$ всех $A \subset X$.

Доказательство. В каждом из случаев а), б) $c(A) \le \aleph_0$ для всех $A \subset X$ (см. (3)), и, следовательно, условия утверждения 3 выполняются для каждого $A \subset X$. Поэтому достаточно показать, что $s(X) \le \aleph_1$. Действительно, если U открыто в X и $s(U) > \aleph_0$, то существует $A \subset U$ такое, что $s(A) = \aleph_1$. Значит, существует непустое открытое в X множество $V \subset [A]$ и, следовательно, $V = V \cap U \neq \Lambda$ и $s(V) \le \aleph_1$. Таким образом, $\xi = \{U : U \text{ открыто } s(X) \le \aleph_1\} - \pi$ -база в X. Тогда по утверждению 2 существует $U = \xi_{\aleph_0}$, такое, что [U] = X, откуда и получаем $s(X) \le \aleph_1$.

Теорема 3. Пусть всякое нигде не плотное в X множество счетно, u, кроме того, выполняется хотя бы одно из следующих условий: a) X не содержит изолированных точек; б) $c(X) \leq \aleph_0$. Тогда X — наследственно

финально-компактно и $s(A) \leq \aleph_1$ для всех $A \subset X$.

Доказательство. В силу утверждения 3 достаточно показать, что X финально-компактно. Действительно, пусть γ — открытое покрытие X. Так как $\zeta = \{U \colon U$ открыто в X и существует $V_v \equiv \gamma$, для которого $U \subset V_v\}$ — база в X, то по утверждению 2 существует дизъюнктное подсемейство $\mu \subset \zeta$, для которого $F = X \setminus \bigcup \{U \colon U \in \mu\}$ нигде не плотно в X и, следовательно, счетно. Ясно, что тогда $\gamma' = \{V_x \colon x \in F\} \cup \{V_v \colon U \in \mu\}$ — искомое счетное подпокрытие, где $x \in V_x \in \gamma$ п $U \subset V_v \in \gamma$ для всех $x \in F$ и $U \in \mu$. Доказательство завершено.

Теорема 4 ($\aleph_1 < 2^{\aleph_0}$). Пусть X — полное в смысле Чеха пространство, всякое нигде не плотное подмножество которого счетно, и пусть, кроме того, выполняется хотя бы одно из следующих условий: а) X не содержит изолированных точек; б) $c(X) \leq \aleph_0$. Тогда X — наследственно финаль-

но-компактное наследственно сепарабельное пространство.

Доказательство. Положим $U=\cup\{U:U$ открыто в X и $s(U)\leqslant\aleph_0\}$ и $H=X\setminus U$. Ясно что $s(U)\leqslant\aleph_0$. Поэтому, если $H\ne\Lambda$, то $s(H)>\aleph_0$ и в силу теоремы 3 $s(H)=\aleph_1$. Кроме того H наследственно финально-компактно и следовательно, с первой аксиомой счетности. Значит, $H=[\{y_\alpha\colon \alpha<\omega_1\}]==\cup\{F_\beta\colon \beta<\omega_1\}$, где $F_\beta=[\{y_\alpha\colon \alpha<\beta\}]$. Поскольку $F_\beta\cap U=\Lambda$ и $s(F_\beta)\leqslant\aleph_0$, то $|F_\beta|\leqslant\aleph_0$ и $|H|=\aleph_1$. Но тогда в H существует изолированная точка x_0 (10) и, следовательно, $U\cup\{x_0\}$ — открытое в X сепарабельное множество, что противоречит определению U. Таким образом, U=X и $s(X)\leqslant\aleph_0$. Поскольку условия теоремы A наследуются по всем замкнутым подмножествам, то в силу A0, A1, A2, A3, A4, A5, A5, A6, A6, A7, A8, A9, A9,

Говорят, что X — пространство со свойством Бэра, если пересечение любого счетного семейства открытых всюду плотных в X множеств всюду плотно в X. Полные в смысле Чеха пространства, G_b -множества регуляр ных счетно-компактных пространств, а также G_b -множества базисно-ком пактных пространств обладают свойством Бэра. Говорят также, что функция f, заданная на семействе ξ , является функцией выбора на ξ , если

 $f(A) \subseteq A$ для всех $A \subseteq \xi$. Положим $f(\xi) = \{f(A) : A \subseteq \xi\}$.

Yтверждение 4. Семейство $\xi-\pi$ -сеть в X тогда u только тогда

когда $[f(\xi)] = X$ для всякой функции выбора f на ξ .

Лемма 1. Пусть X—пространство со свойством Бэра, $\pi w(X) \leq \aleph_1$ $\xi = \{A_\alpha : \alpha < \omega_1\}$ и η —семейства нигде не плотных в X множеств u, кром того, η плотно относительно семейства всех G_δ -множеств u X.

Тогда в X существует дизъюнктная π -сеть $\zeta \subset \eta$ такая, что $|\{B \in \zeta \colon B\}|$

 $\bigcap A_{\alpha} \neq \Lambda$ $|\leq \aleph_0 \partial_{\alpha} R \operatorname{ecex} A_{\alpha} = \xi$.

Доказательство. Пусть $\gamma = \{U_{\alpha}: \alpha < \omega_{i}\} - \pi$ -база в X, и пусть уж определено дизъюнитное семейство $\{B_{\alpha}: \alpha < \alpha' < \omega_{i}\} \subset \eta$. По условин $(U_{\alpha}, \bigcup \{[B_{\alpha}]: \alpha < \alpha'\}) \bigcup \{[A_{\alpha}]: \alpha < \alpha'\} = G_{\alpha'} \neq \Lambda$ и существует $C \in \eta$ такоє что $\Lambda \neq \overline{C} \subset G_{\alpha'}$. Положим $C = B_{\alpha'}$. Нетрудно проверить, что построенное та ким образом семейство $\xi = \{B_{\alpha}: \alpha < \omega_{i}\} - \text{искомая } \pi$ -сеть.

Предложение 1 (СН). Пусть X- пространство со свойством Бэра, $w(X) \leq 2^{\aleph_0}$, $\eta-$ семейство нигде не плотных в X множеств u, кроме того,

 η плотно относительно семейства всех G_{δ} -множеств из X.

Тогда в X существует дизъюнктная π -сеть $\xi \subset \eta$ со следующим свойством: если $Y \subset X$, $c(Y) \leq \aleph_0$ и $f - \phi$ ункция выбора на семействе $\lambda = \{Y \cap B: B \in \xi\}$, то $f(\lambda) -$ наследственно финально-компатно и каждое нигде не плотное в Y множество $C \subset f(\lambda)$ счетно.

Доказательство. Пусть γ — база в X, $|\gamma| \leqslant 2^{\aleph_0} = \aleph_1$ и $\xi = \{[U] \setminus U: U \in \gamma_{\aleph_0}$. Так как X, ξ и η отвечают условиям леммы 1, то в X существует дизьюнктная π -сеть $\zeta \subset \eta$ такая, что $|\{B \in \xi: B \cap A \neq \Lambda\}| \leqslant \aleph_0$ для всех $A \in \xi$. Если теперь $Y \subset X$, $c(Y) \leqslant \aleph_0$, $\overline{\gamma} = \{U \cap Y: U \in \gamma\}$ и C нигде не плотно в Y, то по утверждению 2 существует $U \in \overline{\gamma}_{\aleph_0}$ такое, что $C \subset Y \setminus \overline{U}$ и $Y \subset [\overline{U}]$. Поэтому, существует $A \in \xi$, для которого $C \subset A$, и, следовательно, $|\{B \in \xi: B \cap C \neq \Lambda\}| \leqslant \aleph_0$ для всякого C, нигде не плотного в Y. Значит, если f функция выбора на $\lambda = \{Y \cap B: B \in \xi\}$, то всякое нигде не плотное в Y множество $G \subset f(\lambda)$ счетно. Покажем, что $c(f(\lambda)) \leqslant \aleph_0$. Действительно, существуют P_1 и P_2 такие, что $f(\lambda) = P_1 \cup P_2$, $[P_1]_Y$ — каноническое в Y множество и P_2 нигде не плотно в Y. Так как $c(P_1) \leqslant c([P_1]_Y) \leqslant c(Y) \aleph_0$, а P_2 счетно, то $c(f(\lambda)) \leqslant \aleph_0$ и, в силу теоремы $R_1 \in \mathbb{C}$ 0 наследственно финально-компактно.

Аналогично доказывается

Предложение 1' (СН). Пусть X — пространство со свойством Бэра, $\pi w(X) \leq 2^{\aleph_0}$, $c(X) \leq \aleph_0$, η — семейство нигде не плотных в X множеств u, кроме того, η плотно относительно семейства всех G_{δ} -множеств из X.

Тогда в X существует дизъюнктная π -сеть $\zeta \subset \eta$ со следующим свойством: если f — функция выбора на ζ , то $f(\xi)$ — всюду плотное наследственно финально-компактное множество, каждое нигде не плотное подмножество которого счетно.

При $\eta = \{\{x\}: x \in X\}$, из предложений 1 и 1' сразу следует

Теорема 5 (СН). Пусть X—пространство со свойством Бэра и

 $w(X) \leq 2^{\aleph_0}$.

 \dot{T} огда X содержит всюду плотное подмножество Y со следующим свойством: если Z = Y и $c(Z) \leq \aleph_0$, то Z наследственно финально-компактно и всякое его нигде не плотное подмножество счетно.

Теорема 5' (CH), Пусть X- пространство со свойством Бэра,

 $\pi w(X) \leqslant 2^{\aleph_0} u c(X) \leqslant \aleph_0.$

Тогда Х содержит всюду плотное наследственно финально-компактное

множество, каждое нигде не плотное подмножество которого счетно.

Предложение 2. Пусть $X-T_2$ -пространство точечно-счетного типа без изолированных точек, $\eta-$ семейство всех нигде не плотных в X биком-пактов счетного характера и $\delta-$ семейство всех G_{δ} -множеств из X.

Тогда: 1) если $c(X) \leq \aleph_0$, то η — сеть относительно δ ; 2) если $t(X) \leq$

 $\leq \aleph_0$, то η плотно относительно δ .

Доказательство. 1) Если $x{\in}X$ и $X-T_2$ -пространство, то очевидно, что $\gamma_x{=}\{U\colon x{\not\in}[U],\ U$ открыто в $X\}$ — π -база в X, и из утверждения 2 легко следует, что существует нигде не плотное $G_{\mathfrak{d}}$ -множество $G_{\mathfrak{d}}{\ni}x$, откуда в силу утверждения 1 и вытекает требуемое заключение (см. также (7)). 2) Если F — бикомпакт и $\{U_{\alpha}\colon \alpha{<}\omega_1\}$ — семейство открытых в X множеств такое, что $U_{\alpha}{\supset}[U_{\beta}]$ и $[U_{\alpha}]{\not=}[U_{\beta}]$ для всех $\alpha{<}\beta{<}\omega_1$, то $t(X){>}\aleph_0$, так как в противном случае $\cap\{X\setminus [U_{\alpha}]\colon \alpha{<}\omega_1\}=\cap\{X\setminus U_{\alpha}\colon \alpha{<}\omega_1\}$ замкнуто, но не финально-компактно. Отсюда легко получаем, что в F существует замкнутое нигде не плотное $G_{\mathfrak{d}}$ -множество, и в силу утверждения 1 доказательство завершено.

Из теоремы 2 и предложений 1, 1' и 2 вытекает

Теорема 6 (СН). Пусть $X-T_2$ -пространство точечно-счетного типа со свойством Бэра (например, пространство, полное в смысле Чеха), $\pi w(X) \leq 2^{\aleph_0}$ и $c(X) \leq \aleph_0$.

Тогда в Х существует дизъюнктная п-сеть со следующими свойствами:

1) ζ состоит из бикомпактов счетного характера;

2) $\cup \{F: F \in \zeta\}$ финально-компактно;

3) если $f - \phi$ ункция выбора на ζ , то $f(\zeta) - всюду плотное наследствен$ но финально-компактное множество, каждое нигде не плотное подмножество которого счетно.

Из теоремы 6 и предложения 1 следует

Теорема 7 (СН). Пусть $X-T_2$ -пространство точечно-счетного типа со свойством Бэра (например, пространство, полное в смысле Чеха), $t(X) \leq \aleph_0 u s(X) \leq 2^{\aleph_0}$.

Тогда Х содержит всюду плотное подмножество У со следующими свой-

ствами:

1) $\psi(x, Y) \leq \aleph_0 \partial \pi s \sec x \equiv Y$;

(Z) если $Z \subset Y$ и $c(Z) \leqslant \aleph_0$, то Z — наследственно финально-компактное

множество, каждое нигде не плотное подмножество которого счетно.

Требование счетности тесноты в теореме 7 существенно, поскольку в $\beta N \setminus N$ $\psi(Y) > \aleph_0$ у любого всюду плотного подмножества Y, хотя $w(\beta N \setminus N) \leq 2^{\aleph_0}$.

Из теоремы 6 и теоремы 5 из (8) вытекает

Теорема 7' (CH). Полное в смысле Чеха пространство с условием Суслина и счетной теснотой содержит всюду плотное наследственно финально-компактное множество, каждое нигде не плотное подмножество которого счетно.

Tеорема 8 (CH). Пусть $X-T_2$ -пространство точечно-счетного типа

со свойством Бэра и $|X| \leq 2$ к,

Тогда в X содержится всюду плотное множество Y со следующими свойствами:

1) У — пространство с точечно-счетной базой;

2) если $Z \subset Y$ и $c(Z) \leqslant \aleph_0$, то Z — наследственно финально-компактное множество, каждое нигде не плотное подмножество которого счетно.

Для доказательства теоремы 8 необходимо воспользоваться предложе-

нием 1 и рассуждением, проведенным в теореме 4 из (5).

Необходимо отметить, что есть модель, в которой выполняется (СН) и существует несепарабельный бикомпакт с условием Суслина, счетной теснотой и мощности $\leq 2^{\aleph_0}$ (11). Таким образом, поскольку результат о супцествовании в бикомпакте с условием Суслина и веса ≤2% наследственно финально-компактного всюду плотного подмножества (теорема 5') верен в любой модели, в которой выполняется СН, он не может быть усилен за счет доказательства существования счетного всюду плотного подмножества.

В связи с п. 1) теорем 6-8 естественно возникает следующий

Вопрос. Каждый ли бикомпакт со счетной теснотой имеет точку с пер-

ной аксиомой счетности? Верно ли это в предположении СН?

В заключение авторы выражают искреннюю благодарность В. И. Пономареву за помощь в работе и полезные советы.

Московский государственный университет им. М. В. Ломоносова

Поступило 21 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Архангельский, ДАН, 126, № 2 (1959). ² А. В. Архангельский, ДАН, 192, № 2 (1970). ³ А. В. Архангельский, ДАН, 199, № 6 (1971). ⁴ В. И. Пономарев, ДАН, 166, № 2 (1966). ⁵ В. И. Пономарев, ДАН, 174, № 6 (1967). ⁶ М. М. Чобан, Вестн. Моск. унив., № 6, 87 (1967). ⁷ Г. П. Амирджанов, ДАН, 209, № 2 (1973). ⁸ Б. Э. Шапировский, ДАН, 202, № 4 (1972). ⁹ Б. Э. Шапировский, ДАН, 206, № 3 (1972). ¹⁰ Е. Сесh, В. Pospišil, Publ. facultě Sci. Univ. Masaryk, Brno, 258, 1 (1938). ¹¹ S. Tennenbaum, Proc. Am. Nat. Acad. Sci., 59, № 1 (1968).