УДК 577.158.1 *БИОХИМИЯ*

А. И. АРЧАКОВ, Г. И. БАЧМАНОВА, В. М. ДЕВИЧЕНСКИЙ, Н. С. ЖЕРЕБКОВА, И. И. КАРУЗИНА, Г. И. АЛИМОВ

МАТРИЧНОЕ ВСТРАИВАНИЕ И САМОСБОРКА ПРИ РЕКОНСТРУКЦИИ МИКРОСОМНЫХ РЕДОКС-ЦЕПЕЙ

(Представлено академиком С. Е. Севериным 4 ІХ 1973)

Для реконструкции мембранных ферментных систем применяются три методических приема. Первый не предусматривает введения в реконструирующуюся систему какой-либо матрицы. Реконструкция происходит путем самосборки солюбилизированных мембранных белков и липидов (¹, ²). Второй — это встраивание мембранных белков в липосомы и бислойные мембраны (³). При этом используются как собственные липиды мембран, так и липиды, выделенные из других мембран, и даже синтетические. Изготовленные из них липосомы и бислойные мембраны служат как бы неспецифичной матрицей, в которую должны встраиваться белки. Третий методический прием сводится к встраиванию солюбилизированных липопротеидных комплексов и белков в мембраны, из которых они изолированы (¹). Исходные мембраны применяются в этом случае в качестве строго специфичной матрицы.

В настоящей работе был проведен сравнительный анализ эффективности этих методических приемов для реконструкции редокс-цепей мембран эндоплазматического ретикулума печени. Реконструкция производилась из мембранных белков и липидов, солюбилизированных холатом натрия. «Teни» микросомных пузырьков, полученные в результате обработки фракции низкими концентрациями детергента, и липосомы, приготовленные из яичного лецитина, использовались в качестве специфичных и неспецифичных матриц. Работа выполнена на крысах-самцах весом 200—250 г. Микросомную фракцию получали, как описано ранее (5), используя в качестве среды выделения 1,15% КСІ, содержащий 0,2 мМ этилендиаминотетраацетат (ЭДТА), 1мМ дитиотриэтол. Осадок микросом суспендировали в 100 мМ трис-HCl-буфере, рН 7,4, содержавшем 0,2 мМ ЭДТА и 1 мМ дитиотриэтол (раствор ТЭД). В микросомах и реконструированных фракциях определяли содержание белка $(^{6})$, фосфолипида $(^{7})$, РНК $(^{8})$, содержание питохромов b_5 и Р 450 (°), активность НАДФ-Н- и НАД-Н-специфичных редуктаз (10, 11), НАДФ-Н- и НАД-Н-специфичных n-гидроксилаз анилина и N-диметилаз диметиланилина (ДМА) (12, 13). Неозвученные липосомы из яичного лецитина получали по методу Бенгхема (14).

Концентрация холата Na 0,15%, разрывающая мембрану микросомных пузырьков, но не солюбилизирующая переносчики, была установлена при обработке микросом (фракция 1) разными концентрациями детергента. Изолированные после такой обработки центрифугированием и суспендированные в бездетергентной среде разорванные мембраны замыкаются и образуют везикулы, условно названные фракцией «теней» микросомных пузырьков. Надосадочная жидкость, полученная из фракции «теней» после обработки ее 4% холатом натрия и центрифугирования в течение 90 мин. при 150 000 g, содержит в растворенном виде мембранные белки и липопротеидные комплексы и условно обозначена как «солюбилизат». Для удаления из этой фракции 4% холата Na, который в такой высокой концентрации растворяет мембраны микросом, «солюбилизат» диализо-

вали в течение 22 час. при 4° против раствора, содержащего 20 мМ трис-HCl-буфер, рН 7,4, 0,2 мМ ЭДТА, 1 мМ дитиотриэтол и 0,1% холат Na. Введение в диализационную жидкость 0,1% холата На необходимо для предотвращения самосборки. Диализованный «солюбилизат» (фракция 2) использовали в качестве исходного материала для реконструкции редоксцепей микросом, которую проводили следующим образом. Против раствора, содержащего 20 мМ ЭДТА, 0,2 мМ дитиотриэтол, в течение 22 час. при 4° диализовали четыре системы; а) 6 мл «теней» микросом (15 мг белка в 1 мл) и 55 мл «солюбилизата» (2,5 мг белка в 1 мл) — матричное встраивание; б) контрольную смесь, содержащую 6 мл «теней» и 55 мл раствора ТЭД (100 мМ трис-НСІ-буфер, рН 7,4, 0,2 мМ ЭДТА и 1 мМ дитиотриэтол); в) 55 мл «солюбилизата» и 6 мл раствора ТЭД — самосборка; г) 55 мл «солюбилизата» и 6 мл липосом (3 мг лецитина в 1 мл) встраивание в липосомы. После диализа материал осаждали при 150 000 д в течение 90 мин. Полученные осадки: «тени»+«солюбилизат» (фракция 3), «тени» (фракция 4), осадок «солюбилизата» (фракция 5) и лицосомы+«солюбилизат» (фракция 6) суспендировали в растворе ТЭД и использовали для анализа.

На приведенных микрофотографиях отчетливо видно, что фракция микросом содержит замкнутые пузырьки различного размера с отчетливо выраженной мембраной и большое количество рибосом (рис. 1a). Фракция «теней» состоит из лишенных рибосом замкнутых микросомных пузырьков с плохо контрастируемой мембраной (рис. 16). Возникающие при самосборке из компонентов «солюбилизата» мембранные элементы формируют губчатые образования, в которых отдельные пузырьки сливаются вместе (рис. 1г). Подобные структуры не образуются, если реконструкцию проводить из «солюбилизата» в присутствии «теней» микросом и липосом – специфичных или неспецифичных матриц. В результате встраивания компонентов «солюбилизата» в матрицы формируются пузырьки микросомной фракции с хорошо контрастируемой бислойной мембраной (рис. 1∂ , e). Во фракции линосомы+«солюбилизат» (рис. 1e) исчезают большие многослойные вакуоли, характерные для фракции липосом (рис. 18). Пузырьки, образующиеся во фракциях «тени» + «солюбилизат» (рис. 1∂) п линосомы+«солюбилизат» (рис. 1e), наиболее похожи на

нсходные вакуоли микросомной фракции (рис. 1а).

В результате самосборки и встраивания в липосомы во фракцию, осаждающуюся при 150 000 g, уходит около 35% всего исходного белка (расчет как во фракции 5, так и во фракции 6 производится от общего белка фракции 2), а при матричной реконструкции 50% (расчет во фракции 3 сделан от суммы содержания белка во фракциях 4 и 2). Реконструированные мембраны содержат больше цитохрома b₅, чем исходные микросомы. Наибольшее содержание цитохрома b, в мембранах, полученных в результате встраивания переносчика в «тени» микросомных пузырьков (фракция 3) — 0.81 нмоль мг⁻¹. В липосомы этот переносчик встраивается менее эффективно (фракция 6) -0.64 нмоль мг⁻¹. Удельное содержание его в липосомах несколько ниже, чем во фракции мембран, полученных путем самосборки (фракция 5) - 0.71 нмоль мг⁻¹. Цитохром P450, в отличие от цитохрома b₅, не встраивается в «тени» микросомных мембран. Удельное содержание его во фракции 3 $(0.74 \text{ нмоль} \cdot \text{мr}^{-1})$ ниже, чем во фракции 4 «теней» $(0.86 \text{ нмоль} \cdot \text{мr}^{-1})$. В то же время имеет место четко выраженная рактивация его при самосборке (фракция 5). Отношение неактивной формы цитохрома Р420 к активной P450, равное 2,3 в «солюбилизате» (фракция 2), снижается во фракции 5 (осадок «солюбилизата») и во фракции 6 (липосомы+«солюбилизат») до 1.

НАД-Н- и НАДФ-Н-специфичные редуктазы обнаруживаются во фракциях 3, 5, 6 с удельной активностью гораздо большей, чем во фракциях 1 и 4. Однако расчет общей активности редуктаз, по которой судили

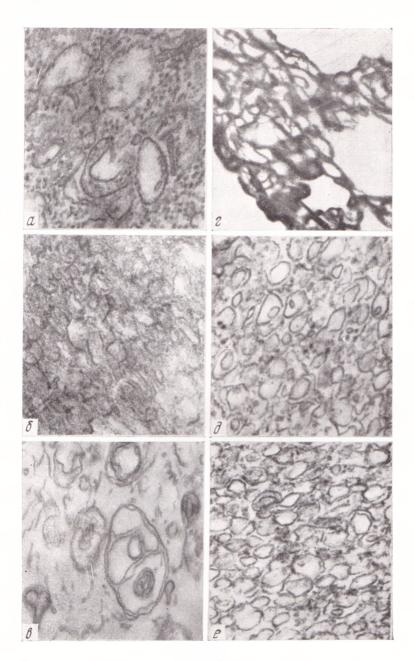


Рис. 1. Электронные микрофотографии микросомных пузырьков и реконструированных мембран. a — микросомная фракция, $70\,000\times$; b — фракция «теней» микросомпых цузырьков, $70\,000\times$; b — фракция липосом, $22\,000\times$; b — фракция осадок «солюбилизата» (самосборка), $70\,000\times$; b — фракция «тени»+«солюбилизат» (встраивание в специфичную матрицу), $70\,000\times$; b — фракция липосомы+«солюбилизат» (встраивание в неспецифичную матрицу), $70\,000\times$

Активность редуктаз и гидроксилаз во фракциях, полученных при реконструкции мембран (a — нмоль·мг $^{-1}$ ·мин $^{-1}$, b — валовый выход, нмоль·мин $^{-1}$)

		Фракция					
Показатели		1	2	3	4	5	6
НАДФ-Н-зависимое <i>п</i> -гид- роксилирование анилина НАДФ-Н-зависимое N-деме- тилирование ДМА НАД-Н-зависимое <i>п</i> -гидро- ксилирование ДМА НАД-Н-зависимое N-деме- тилирование ДМА	a 6 a 6 a 6	0,64 11 0,060 0,88		0,40 33 6,1 510 0,076 6,3 0,81	0.70 34 9.6 490 0,10 4,8 0,92	0,070 2.9 2,1 90 0,030 1,2 0,61 26	0,065 2.6 1,7 67 0,029 1,1 0,49 20

о связывании флавопротендов с реконструированными мембранами, показал, что лишь в случае НАД-Н-специфичного флавопротенда имеет место добавочное встранвание. Общий выход активности этого фермента во фракции «тени» + «солюбилизат» (фракция 3) гораздо выше, чем величины, получаемые в результате суммирования общих выходов активности данного фермента во фракциях 4 («тени») и 5 (осадок «солюбилизата»). При самосборке реконструировалось от 10 до 20% исходной активности НАДФ-Н-зависимого n-гидроксилирования анилина и N-деметилирования ДМА (табл. 1). В случае НАД-Н-зависимого n-гидроксилирования анилина при самосборке реконструировалось около 25%, а N-деметилирующей активности — гораздо больше, до 55% от исходного уровня. Встраивание переносчиков в мембраны «теней» микросомных пузырьков не сопровождалось реконструкцией гидроксилазных систем. Это можно объяснить тем, что конечный компонент всех систем гидроксилирования, цитохром Р450, не встраивается в «тени» мембран эндоплазматического ретикулума.

Таким образом, мембранные белки-ферменты обладают различным сродством к тем биологическим мембранам, из которых они получены. Одни из них, как, например, НАД-Н-специфичный флавопротеид и цитохром b₅, встраиваются в «тени» микросомных мембран, другие — НАДФ-Н-специфичный флавопротеид и цитохром P450—в эти мембраны не встраиваются. И те, и другие ферменты связываются с липосомами и входят в состав комплексов, формирующихся в результате самосборки.

Второй Московский государственный медицинский институт им, Н. И. Пирогова

Поступило 3 IX 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ P. C. Hinkle, J. J. Kim, E. Racker, J. Biol. Chem., 247, 1338 (1972). ² A. Y. Lu, H. Kuntzman et al., J. Biol. Chem., 247, 1727 (1972). ³ M. Rogers, P. Strittmatter, J. Biol. Chem., 248, 800 (1973). ⁴ P. Strittmetter, J. Rogers, L. Spatz, J. Biol. Chem., 247, 7188 (1972). ⁵ A. И. Арчаков, В. М. Девиченский и др., Биохимия, 33, 479 (1968). ⁶ O. H. Lowry, H. J. Rosenbrough et al., J. Biol. Chem., 193, 265 (1951). ⁷ P. S. Chen, J. Toribara, H. Warner, Anal. Chem., 28, 1756 (1956). ⁸ A. C. Спирин, Биохимия, 23, 656 (1958). ⁹ T. Omura, R. Sato, J. Biol. Chem., 239, 2370 (1964). ¹⁰ G. Dallner, Acta Pathol. Microbiol. Scand. Suppl., 166 (1963). ¹¹ T. Roerig, S. Mascaro, Arch. Biochem. and Biophys., 153, 475 (1972). ¹² J. Hilton, A. C. Sartorelli, J. Biol. Chem., 245, 4187 (1970). ¹³ A. И. Арчаков, Л. Ф. Панченко и др., Биохимия, 34, 604 (1969). ¹⁴ A. D. Bangham, Progr. Biophys. Mol. Biol., 18, 29 (1968).