УДК 551.251 *ГЕОЛОГИЯ*

В. Г. БОГОЛЕПОВ, И. В. ДАВИДЕНКО

ОБ УЧАСТИИ СКВОЗЬМАГМАТИЧЕСКИХ РАСТВОРОВ И ПОДЗЕМНЫХ ВОД ПРИ РЕГИОНАЛЬНОМ МЕТАМОРФИЗМЕ И ГИДРОТЕРМАЛЬНОМ МЕТАСОМАТОЗЕ

(Представлено академиком Д. С. Коржинским 13 Х 1972)

Процессы метаморфизма и рудообразования протекают при участии растворов. Нами был предложен новый метод определения их природы (¹, ²), основанный на следующих положениях. В подземных водах и газах содержится аргон в основном воздушного происхождения, т. е. отношение Ar^{*0} : Ar^{*6} близко к 296. Аналогичный вывод получен Е. Я. Гавриловым и Г. И. Теплинским для углеводородных газов (³). В случае участия подземных вод и газов в формировании растворов воздушный Ar должен отмечаться также и в составе газово-жидких включений в минералах.

На установке, схема которой описана в (²), проанализированы пробы Аг реликтов растворов (табл. 1). Рассмотрение этих данных позволяет сде-

лать следующие выводы:

1. По процентному отношению воздушного и радиогенного Ar выделяется две группы образований. В первую попадают метаморфические породы и приуроченные к ним пегматиты и хрусталеносные жилы, а также граниты и пострудные жилы. Ко второй относятся грейзены, скарны и пег-

матиты, приуроченные к массивам аллохтонных гранитоидов.

- 2. Образование пегматитов в метаморфических породах связано с процессами гранитизации, возникновением кислых расплавов. Поэтому отсутствие воздушного аргона в пегматитообразующих расплавах-растворах свидетельствует об отсутствии влияния подземных или седиментогенных вод в метаморфических процессах, т. е. о правомерности гипотезы П. Термье, Д. С. Коржинского и Д. Ферхугена, согласно которой предполагается существование притока растворов и тепла из глубин в области или пояса метаморфизма. А это значит, что указанные пояса приурочиваются к местам, где на глубинах происходят активные процессы в мантии, и что, следовательно, существует связь строения и развития коры с процессами в верхней мантии — связь, на которую указывал В. В. Белоусов (5). Сохранение повышенных тепловых потоков в таких областях от докембрия до наших дней (4) свидетельствует о продолжении глубинных процессов в течение всей геологической истории земной коры. Следствием этого и является наличие ювенильных струй, давших кварцевые жилы с горным хрусталем и появившихся гораздо позднее прохождения процессов метаморфизма и гранитизации. Приведенные в табл. 1 данные не могут быть объяснены гипотезами Н. Г. Судовикова, Г. Винклера и К. Менерта, утверждающими, что метаморфогенные воды являются основными в рассматриваемых про-
- 3. Увеличение роли воздушного аргона в газово-жидких включениях новообразований поясов метаморфизма отмечается в следующих случаях. І. Если метаморфические толщи и находящиеся в них пегматиты были подвержены более поздним процессам преобразования в регрессивную стадию жизни этих поясов. Такое омоложение отчетливо улавливается разницей геологического абсолютного возраста омоложенных пород. Для районов Мамы и Мугоджар по геологическим представлениям возраст определяется как протерозойский, а по результатам К—Аг-метода от 440—540 млн лет

Таблица 1

4D .	Объект исследования	Места взятия проб	Исслед. минерал (порода)	Число проб	Аг, 10 ⁻³ мм ³ на 1 г породы	Интервалы вскры- тия включений, °C		Воздушный Аг, в % от общ. колич. во включениях		
T.H.						a	б	a	б	В
1	Пегматиты в метамор- фических породах	Кольский, г. Лейвова, тела №№ 2, 125, 212	Кварц	7	4,14—17,81	160 —350	360—600	13,3 0,7—36,8	8,0 1,4—26,0	10,8 1,0—27,
2	То же	Кольский, г. Риколатва, тело № 531	»	5	9,50—33,95	160—350	360—600	$\frac{4,7}{0,2-15,3}$	9,9	6,0 0,1—21
3	» »	Карелия, Малиновая варака, тело № 154	- »	3	9,509,60	0-600		-	-	1,0—1,1
4	» »	Мамско-Чуйский район, Колотовское, Согдион- донское	»	2	0,46—4,77	180—350	360—620	8,0 2,7—13,5	21,9 2,8—42,9	10,4 2,7—18
5	» »	Мугоджары, Тулепсай, Милисай, Каинды, Карасай	»	6	0,14—0,66	120—370	380—600	73,0 50,8—92,5	55,9 31,8—83,4	62,6 42,0—89
6	Пегматиты в гранитах среди матаморфиче- ских пород	Волынь, тело № 350	Кварц блоковой и сотовый	4	1,62—6,87	0—620		-	-	4,5 1,2—6,7
7	То же	То же	Кварц из погре-	6	0,51—1,24	0600		_	_	$\frac{32,6}{16,2-42}$
8	Кварцит метаморфиче- ский	Аладанский щит	Кварцит	1	1,26	0—	600	-	_	0,0
9	Хрусталеносные жилы альпийского типа в амфиболитах	Полярный Урал, Сура Из	Кварц из погреба	1	1,47	60—260 430—550	260—430	35,3 24,7	24,7	_
0	Граниты среди осадоч- ных пород	Казахстан	Граниты	1400	0,1—100	Плав	пение	_	_	$\frac{5,0}{1,0-20}$
1	Пострудные кварцевые жилы в гранитах среди осадочных пород	Казахстан, Акчатау	Кварц	3	1,65-3,71	120—340	360—600	$\frac{76,3}{64,2-88,6}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{18,6}{16,2-23}$

12	Пегматиты редкометаль- ные в гранитах среди осадочных пород	Казахстан, Белогорское, ж. Восточная	Кварц	8	0,64—2,30	180—380	400—600	$\frac{60,7}{57,0-68,4}$	62,2 58,3—68,6	-
13	Негматиты в гранитах среди осад. пород	Казахстан, Бектауата	»	8	0,10-0,25	170—360	370—600	$\frac{68,5}{59,5-89,5}$	$\frac{74,8}{45,9-77,4}$	$\frac{74,5}{73,2-75,9}$
14 15	То же Грейзены в гранитах	Казахстан, Акчатау То же	» Кварц-топазовые	4	0,48—0,61	150—340	360600	85,0	71,0	86,5
10	среди осадочных пород			46	0,250,71	180-340	360—600	$\frac{89,5}{86,7-95,2}$	62,2 31,0—88,2	68,8 34,6—89,0
16	То же	Казахстан, Кара-Оба	Кварц жильный	6	0,260,64	180—350	370—600	74,1	61,7	68,8
17	Жилы в гранитах среди карбонатных пород	Хакассия, Сорское	То же	7	0,80—0,82	190-	-650	70,876,9	58,7—62,9	66,8—71,5 50,3
	То же	То же	Флюорит	1	1,34	120-	-460			20,5—92,4 53,8
19	Скарны в осад. породах	Казахстан, Гульшад	Кварц	2	0,95—1,10	120—170	290—480	94,0	95,4	_

Примечание. Образцы для исследований были любезно предоставлены: $N_3 - A$. С. Никаноровым, $N_4 - B$. Н. Сучковым, $N_5 5 - B$. А. Ефимовым, $N_5 6$, 7 - A. И. Захарченко, $N_5 8 - A$. М. Дымкиным, $N_5 9 - B$. А. Карикиной, $N_5 12 - B$. И. Гайдиной и Э. Я. Полывянным, $N_5 17$, 18 - B. И. Сотниковым и Э. Я. Полывянным. Анализы проб и обработка результатов произведены Э. Я. Полывянным в лаборатории геохимии изотопов (заведующий лабораториов Б. М. Найденов). Определение изотопии аргона, извлеченного из казакстанских гранитов ($N_5 10$), произведено в лаборатории геохимии изотопов Казакского н. Памерального сырыя. Над чертой — среднее, под чертой — пределы, а — низкотемпературные включения, б — высокотемпературные, в — без разделения. ных Tare

сивно гались образования этажа. верхнего ходятся

метаморфизован-

ниже,

В

интен-

распола-

Очаги

магмо-

структурного

породах

нижнего

понентов тогенных

(°).

летучих

KOM-

гранитные массивы на-

Посторогенные

В

отложениях

нильных

подсоса в

них немагмарастворов, возникающих камерных

В

резуль-

пегматитов,

тел

деятельности

юве-

тизации

При разгермеполостей

но, уже иии ние фазу ный, газы СКИХ СТИИ пород, также ническим приуроченные лении гранита. лах и лийсодержащих минераобразовался из в них был как собственчений находились в виде вклюизвлеченных воздушного детельствует вости этих выводов свиводными. О фические породы тизирующиеся метаморотогнаны вверх и гранигеоизотермами они были нитизации восходящими ли, так как еще до грапроцессах не участвовапроисхождения жинским, как показано Д. С. Корбой области гранитизаочаги структурного этажа. Эти рушение такое и имеют только при плад Верояттак и тот, В гранитах растворов. практически седиментогенного метаморфических в минералах; Аг сквозьмагматичепредставляли сопроисходит происходившей, зонам кристалличепроисхожде-Ar поп справедлииз граниотсутствие растворы, K⁴⁰ в ка-В который Воды и B текто газах, оыли хите газы безуча-(где

ских решеток минералов), из которых были образованы кварцевые пост-

рудные жилы в гранитах.

5. В пегматообразующих растворах, из которых в аллохтонных гранитных массивах формировались пегматиты, содержится значительное количество воздушного Аг. Вовлечение подземных вод на магматическом этапе становления интрузий можно представить в следующем виде. Вначале по тектоническим зонам глубокого заложения внедрилась гранитная магма. Уравновешивание внутреннего давления магмы с внешним привело к ее остановке. Термальный прогрев вокруг вторичного магматического очага отгонял все трещинные и капиллярные метеорные воды и образовывал ореол сухих пород, в пределах которого при участии поровых вод (10) возникали роговики. Последующее охлаждение расплава, полимеризация и кристаллизация (11) привели к сокращению его объема и опусканию изотерм вокруг магматического очага, что дало толчок, к подтоку подземных вол в ранее осущенные околоинтрузивные породы. Из-за наличия свода в апикальной части интрузии возникал вакуум, который по истечении некоторого времени и при появлении значительной разницы во внутреннем и внешнем давлении ликвидировался путем разгерметизации свода и подсоса легколетучих соединений из вмещающих пород. Растворение летучих компонентов в магме приводило к понижению температуры начала кристаллизации, а значит и к перерыву процесса. Так возникали многофазные интрузивы. Отделение летучих от магмы шло при полимеризации расплава еще в жидкую стадию (11). Поэтому выделившиеся растворы скапливались у контактов между гранитами и кровлей или между отдельными фазами кристаллизации. Здесь же впоследствии образовались пегматиты.

6. В грейзеновых и скарновых месторождениях, так же как и в магматических пегматитах, содержания воздушного Аг в газово-жидких включениях значительны. Однако механизм вовлечения подземных вод в магматический и послемагматический этапы различны. Большинство массивов сопровождается слабым гистерогенным разложением породы. Крупные скопления пегматитов или руд связаны с интрузиями, которые приурочиваются к палеоводообильным участкам земной коры (12). Поэтому возникновение месторождений является следствием патологического протекания процессов. Если учесть, что в метаморфических породах, возникших при участии ювенильных растворов, главными полезными компонентами являются пьезокварц и слюда, то сопоставление этих фактов заставляет усомниться в магматогенном источнике многих металлов, так как иначе распре-

В заключение авторы благодарят Б. М. Найденова и Э. Я. Полывянного

за производство анализов, советы и критический просмотр рукописи. Казахский научно-исследовательский

институт минерального сырья Алма-Ата Поступило 11 X 1972

Кольский филиал им. С. М. Кирова Академии наук СССР Апатиты

деление месторождений было бы обратным.

ЧАТИРОВАННАЯ ЛИТЕРАТУРА

1 В. Г. Богоденов, Б. М. Найденов, Э. Я. Полывянный, Вестн. АН КазССР, № 12 (1970). 2 В. Г. Богоденов, Б. М. Найденов, Э. Я. Полывянный, Тр. Всесоюзн. н.-и. инст. синтеза мин. сырья, 14 (1971). 3 Е. Я. Гаврилов, Г. И. Теплинский, Геохимия, № 4 (1973). 4 Б. Г. Поляк, Я. Б. Смирнов, ДАН, 168, № 1 (1966). 5 В. В. Белоусов, Вестн. АН СССР, № 5 (1970). 6 Ю. М. Соколов, Метаморфогенные мусковитовые пегматиты, «Наука», 1970. 7 Т. П. Семенова, Возраст горных пород некоторых районов Казахстана, 1969. 8 И. А. Ефимов, Г. М. Бурд, Сов. геология, № 11 (1970). 9 Б. М. Найденов, В. Г. Боголенов и др., Геохимия, № 6 (1972). 10 Ф. К. Шипулин, Геол. рудн. месторождений, № 3 (1960). 11 В. А. Нарсеев, Вулканизм и глубинное строение Земли, «Наука», 1966. 12 В. Г. Боголепов, Геология, геохимия и минералогия медно-порфировых месторождений Казахстана, Алма-Ата, 1969. 13 Е. А. Басков, В. Е. Ветштейн и др., Третий Всес. симпозиум по применению стабильных изотопов в геохимии, М., 1970. 14 М. Неймайр, История Земли, СПб, 1899, стр. 146. 15 В. И. Сотников, Э. Я. Полывянный, А. А. Про-