УЛК 546.65:541.49:543.422

химия

С. Ф. ПОТАПОВА, Р. С. ЛАУЭР, Л. А. ОВЧАР, академик АН УССР Н. С. ПОЛУЭКТОВ

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИЗУЧЕНИЕ РАЗНОЛИГАНДНЫХ КОМПЛЕКСОВ НЕОДИМА, ГОЛЬМИЯ И ЭРБИЯ С ЛИМОННОЙ КИСЛОТОЙ И ПЕРЕКИСЬЮ ВОДОРОДА

Спектрофотометрическим методом ранее было установлено образование разнолигандных комплексов, в состав которых входят ион лантаноида, H_2O_2 и этилендиаминтетрауксусная кислота (¹). Желательно было выяснить возможность образования подобного рода комплексных соединений с H_2O_2 ионов лантаноидов (Ln) также с оксикарбоновыми кислотами, в частности с лимонной кислотой (Cit).

Исследования проводили с ионами Nd³⁺, Ho³⁺ и Er³⁺, обладающими в видимой части спектра чувствительными к изменению поля лиганда по-

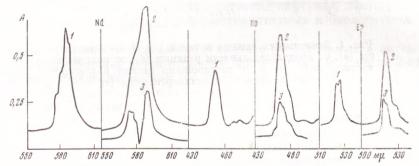


Рис. 1. Спектры поглощения ионов Nd^{3+} , Ho^{3+} и Er^{3+} в растворах комплексов с Cit (1) и с Cit и H_2O_2 (2), а также дифференциальная запись спектров поглощения растворов Me с Cit и H_2O_2 (3). [Me] = [Cit] = $= 1\cdot 10^{-2}~M$; $[H_2O_2] = 2\cdot 10^{-2}~M$; pH > 10,0; $l=5~{\rm cm}$

лосами поглощения, соответствующими так называемым сверхчувствительным переходам (с.ч.п.). $\mathrm{Nd}^{3+} {}^4I_{^9/2} \rightarrow {}^{2.4}G^{7}_{/2}$, ${}^5/_2$ (область спектра $16\,300-18\,200\,\mathrm{cm}^{-1}$), $\mathrm{Ho}^{3+} {}^5I_8 \rightarrow {}^3\mathrm{H_6}$ (область спектра $20\,850-23\,250\,\mathrm{cm}^{-1}$), $\mathrm{Er}^{3+} {}^4I_{^{19}/_2} \rightarrow {}^4G^{11}/_2$ (область спектра $18\,500-20\,000\,\mathrm{cm}^{-1}$).

В присутствии H_2O_2 в спектрах поглощения растворов цитратных комплексов Ln происходят изменения: оптическая плотность в максимумах

Таблица 1 Изменение в положении максимумов полос поглощения растворов цитратных комплексов р.з.э. и их интенсивности в присутствии $\rm H_2O_2$

P.3.9.	Цитратные комплексы			Цитратные комплексы + H ₂ O ₂				
	положе- ние мак- симума (λ, мµ)	ε	$P \cdot 10^6$	положе- ние мак- симума (λ, мµ)	٤,	$P_i \cdot 10^6$	$\begin{array}{c} \Delta \lambda = \\ = \lambda_i - \lambda \end{array}$	P_1/P
Nd Ho Er	582 453 521.5 524	11,0 6.2 4,6 5,0	17,47 13,26 5,26	585,6 452 521	13,0 9,8 7,6	28,30 22,32 8,79	+3,5 -1,0 -0,5	1,62 1,68 1,67

ноглощения увеличивается, полосы уширяются и наблюдается незначительный сдвиг максимума поглощения как в сторону длинных (Nd), так и коротких (Ho, Er) длин волн. На дифференциальных записях спектров поглощения растворов (2) комплексов Nd можно наблюдать 4 пика с λ 574,0; 576,5; 579,0; 588,0 м μ ; комплексов Ho - 3 пика с λ 446,0; 452,0 и 461,5 м μ и Er - 3 пика λ 520,5; 522,0 и 0.25

Изменения, происходящие в спектрах поглощения растворов цитратных комплексов Ln в присутствии H_2O_2 , свидетельствуют об образовании новых комплексных соединений — разнолигандных, в состав которых вхолит H_2O_2 .

В табл. 1 приводятся данные об изменениях в положении максимумов полос поглощения, соответствующих с.ч.п. растворов цитратных комплексов Nd, Ho и Er и их интенсивности в присутствии H_2O_2 . Интенсивность полосы поглощения может быть охарактеризована силой осциллятора (P), которую находили как описано в (3). Значения P полос поглощения с.ч.п. ионов Nd^{3+} , Ho^{3+}

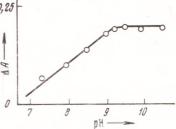


Рис. 2. Зависимость разностной оптической плотности ΔA растворов разнолигандных комплексов Er от pH растворов. [Me] = [Cit] = $1 \cdot 10^{-2} M$; l=5 см

 $\pi \ Er^{3+}$ в растворах цитратных и разнолигандных комплексов приведены также в табл. 1.

Как видно из табл. 1, силы осцилляторов с.ч.п. при присоединении молекулой цитратного комплекса молекул перекиси водорода возрастают в 1,62—1,68 раз.

Разнолигандные комплексы Ln образуются в щелочной среде при pH>8. Максимальная степень их образования наблюдается при pH>10,0.

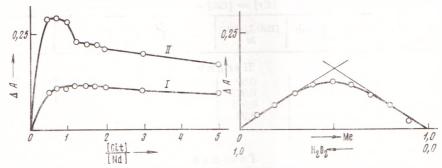


Рис. 3. Определение соотношения компонентов в разнолигандлых комплексах. Слева — серия молярных отношений в системе $[\mathrm{Nd} + \mathrm{H}_2\mathrm{O}_2] - [\mathrm{Cit}]$; $I - \lambda_1$ 576,5 мµ; $II - \lambda_{11}$ 588 мµ; $[\mathrm{Nd}] = [\mathrm{H}_2\mathrm{O}_2] = 1 \cdot 10^{-2}$ M; pH 10,2—10,3; l = 5 см. Справа — днаграмма изомолярных серий системы $[\mathrm{Nd} + \mathrm{Cit}] - [\mathrm{H}_2\mathrm{O}_2]$; $[\mathrm{Nd} + \mathrm{Cit}] + [\mathrm{H}_2\mathrm{O}_2] = 1 \cdot 10^{-2}$ M; λ 588 мµ; pH>10,5; l = 5 см

Для примера на рис. 2 приведен график зависимости дифференциальной оптической плотности (ΔA) в растворах разнолигандных комплексов Ег от рН. Определение соотношения компонентов в образующихся разнолигандных комплексах Nd, Но и Ег было проведено с помощью методов молярных отношений, ограниченного логарифмического и изомолярных серий. Во всех случаях $Me: Cit: H_2O_2=2:1:2$. На рис. 3 приведены графики, построенные по данным, полученным при использовании метода молярных отношений и изомолярных серий для разнолигандных комплексов Nd. При [Cit]/[Me]>1 возможно образование комплексных соединений с соотношением $Me: Cit: H_2O_2=1:1:1$. Следует заметить, что дифференциальная запись спектров поглощения растворов разнолигандных комплексов, полу-

ченных при [Cit]/[Me] = 0.5 - 0.75 и [Cit]/[Me] = 1.25 и выше, различается

по своему виду (рис. 4).

В ранее опубликованной работе спектрофотометрическим методом, в щелочной среде (рН 9)было определено соотношение Me:Cit в молекуле цитратных комплексов ионов лантаноидов; оно оказалось равным 1:1 (4). В указанных условиях потенциометрическим методом установлено также

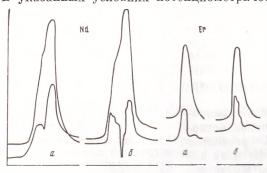


Рис. 4. Прямая и дифференциальная запись спектров поглощения растворов разнолигандных комплексов Nd и Er при [Cit]/[Me]= =0,5-0,75 (a) и [Cit]/[Me]=1,25 (б). [Me]= =1 \cdot 10-2 M; [H₂O₂]=2 \cdot 10-2 M; pH>10; l=5 см

существование лимоннокислых комплексов La, Pr, Nd, Sm состава $[Me_2C_6H_4O_7(OH)_2(H_2O)_6].$ Вероятность образования такого соединения авторы объясняют тем, что оно имеет симметричную структуру и содержит устойчивые пятичленные циклы (5). Как показали наши опыты, минимальная концентрация лимонной кислоты, необходимая для получения растворов солей Ln в щелочной среде (рН> >10,0), составляет $\frac{1}{2}$ концентрации металла. Можно сделать предположение о наличии растворе комплексов с соотношением компонентов Me:Cit=

=2:1. Очевидно, эти комплексы и принимают участие в образовании разнолигандных комплексов возможного состава — $[Me_2(Cit)(OH)_2(H_2O_2)_2 \cdot nH_2O]^{2-}$.

Таблица 2 Константы устойчивости (K_{ycr}) * разнолигандных комплексных соединений Nd. Ho, Er с лимонной кислотой и перекисью водорода. [Nd] = [Ho] = [Er] = [Cit] = $1 \cdot 10^{-2} M$, pH ~ 10.5

[H ₂ O] _{Общ} ·10 ² ,	[(Me ₂ Cit) (H ₂ O ₂) ₂]····································	[H ₂ O ₂] _K -10 ² ,	$\begin{array}{c c} ([H_2O_2]_{0\bar{0}\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}1$	[Me ₂ Cit]·10 ² ,	KycT · 10-4						
Неодим											
1,0 1,25 1,50 1,75	0.40 0,435 0.485 0,495	0,80 0,875 0,975 0,99	0,20 0,375 0,525 0,76	0,10 0,025 0,515 0,01	100,0 124,0 121,3 85,3 Cp. 107,7						
		Голь	мий								
1,0 1,25 1,50 1,75 2,0	0,315 0,378 0,413 0,44 0,46	0.63 0,755 0.825 0.88 0,93	0,37 0,495 0,675 0,87 1,07	0,185 0,122 0,087 0,06 0,04	12,1 12,6 10.3 9,7 10,2						
					Cp. 11.0						
1,0 1,25 1,50 1,75 2,0	0.28 0.34 0.38 0.418 0,45	0,57 0,67 0,76 0.835 0,905	0,43 0,58 0.74 0.915 1,095	0.22 0.16 0.12 0.08 0,05	7.0 6,8 6.3 6.2 7,5						
					Cp. 6.8						

[•] $K_{yct} = [(Me_2Cit)(H_2O_2)_2]/[Me_2Cit][H_2O_2]^2$.

При использовании результатов опытов серии молярных отношений были рассчитаны константы образования разнолигандных комплексов Nd, Но и Er (табл. 2). Прочность разнолигандных комплексов уменьшается от Nd в Er.

Лаборатории Института общей и неорганической химии Академии наук УССР Олесса

Поступило 17 VII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Г. Богданович, Н. И. Печурова и др., ДАН. 188, № 1, 97 (1969). ² Г. В. Малькова, Г. А. Шутова, К. Б. Яцимирский, ЖНХ, 9, № 8, 1883 (1964). ³ Н. С. Полуэктов, Л. И. Кононенко и др., ДАН, 206, № 6, 1395 (1972). ⁴ В. Т. Мищенко, Н. С. Полуэктов, Укр. хим. журн., 30, № 7, 663 (1964). ⁵ К. Л. Маляров, Ф. П. Судаков, ЖНХ, 6, № 7, 1559 (1961).