УЛК 517.54

MATEMATHKA

B. B. CTAPKOB

опровержение одной гипотезы о подчинении ДЛЯ ЗВЕЗДООБРАЗНЫХ ФУНКЦИЙ

(Представлено академиком В. И. Смирновым 16 V 1973)

Пусть S_{α}^* , $0 \le \alpha < 1$, — класс звездообразных функций порядка α , т. е. функций f(z), регулярных и однолистных в единичном круге Δ = $=\{z: |z| < 1\}$, taken, uto f(0) = 0, f'(0) = 1, Re $\{zf'(z)/f(z)\} \ge \alpha$, $z \in \Delta$.

Отметим, что функция $K_{\alpha}(z)=z/(1-z)^{2-2\alpha} \in S_{\alpha}^*$; назовем ее функцией

Кёбе порядка α.

Будем говорить, что функция F(z) подчинена функции G(z) в круге |z| < R комплексной плоскости (пишем F(z) < G(z)), если F(z) и G(z)регулярны в круге |z| < R и образ $F(\{|z| \le r\})$ круга $|z| \le r$ содержится

в $G(\{|z| \le r\})$ при всех r, 0 < r < R.

В 1932 г. А. Маркс (1) сделал предположение, что $f'(z) < K_0'(z)$ в Δ для всех $f \in S_0^*$. Затем Б. Пинчук (2) и Р. Логлин (3) обобщили эту гипотезу, предположив, что $f'(z) < K_{\alpha}'(z)$ в Δ для всех $f \in S_{\alpha}^*$, $\alpha \in [0,1)$. В 1971 г. Пфальтцграфф (4) доказал, что гипотеза верна для $\alpha = 1/2$. Хаммель (5) опроверг гипотезу для $\alpha=0$.

Эта заметка в основном посвящена доказательству того, что гипотеза

Маркса неверна при всех $\alpha \in [0, 1)$, кроме $\alpha = \frac{1}{2}$.

Областью Маркса порядка с назовем

$$\mathcal{M}_{\alpha}(z_0) = \{w: w = \log f'(z_0), f \in S_{\alpha}^*\},$$

где под $\log f'(z_0)$ понимаем то значение, которое получим при непрерывном изменении $\log f'(tz_0)$ при изменении t от нуля до единицы, причем полагаем $\log 1=0$.

Qтметим некоторые свойства $\mathcal{M}_{\alpha}(z_{\scriptscriptstyle 0})$.

1) $\mathcal{M}_{\alpha}(z_0) = \mathcal{M}_{\alpha}(|z_0|)$, tak kak echh $f(z) \in S_{\alpha}^*$, to $e^{-i\theta} f(e^{i\theta}z) \in S_{\alpha}^*$, $-\pi < \theta \leq \pi$.

2) $\mathcal{M}_{\alpha}(r)$, 0 < r < 1, — замкнутое, ограниченное множество. 3) Если $|z_1| < |z_0|$, то $\mathcal{M}_{\alpha}(|z_1|) \subset \mathcal{M}_{\alpha}(|z_0|)$, так как если $f(z) \in S_{\alpha}^*$, то $f_t(z) = t^{-1}f(tz) \in S_{\alpha}^*$ при 0 < t < 1 и $f_t'(z) = f'(tz)$.

4) Множество $\mathcal{M}_{\alpha}(r)$ симметрично относительно вещественной оси.

Областью Кёбе порядка а назовем

$$\mathcal{H}_{\alpha}(r) = \{w \colon w = \log K_{\alpha}'(z), |z| \leq r\}.$$

Ветвь логарифма здесь определим, как и в определении $\mathcal{M}_{\alpha}(r)$.

Tеорема 1. Φy нкция $\frac{1}{4(1-lpha)}\log K_{lpha}{}'(z)$ — звездообразная порядка

нуль для всех $\alpha \in [0, 1)$.

Обозначим $\varphi(\theta) = \log K_{\alpha}'(e^{i\theta}) = \log (1 + e^{i\theta}(1 - 2\alpha)) - (3 - 2\alpha)\log (1 - e^{i\theta}).$ Для доказательства достаточно показать, что $\operatorname{Im} \{ \varphi'(\theta) \} \leq 0, \ \theta \in [0, 2\pi];$ Re $\{\varphi'(\theta)\} \le 0$ при $\theta = [0, \pi]$, Re $\{\varphi'(\theta)\} \ge 0$ при $\theta = [\pi, 2\pi]$.

Теорема 2. Пусть 0 < r < 1 и w_0 — граничная точка $\mathcal{M}_{\alpha}(r)$, $\alpha \in [0,1)$.

Тогда $w_1 = \log f_0'(r)$, где

$$f_0(z) = \frac{z}{(1 - e^{i\theta_1} z)^{2(1 - \alpha)s} (1 - e^{i\theta_2} z)^{2(1 - \alpha)(1 - s)}} \in S_{\alpha}^*, \tag{1}$$

 $0 \leq \theta_1, \ \theta_2 \leq 2\pi; \ 0 \leq s < 1.$

Доказательство. По определению $\mathcal{M}_a(r)$, существует $f_0{\in}S_a^*$ такая, что $w_0{=}\log f_0{'}(r)$. Известно (см. $\binom{6}{0}$), что f_0 либо является решением экстремальной задачи $\min_{f\in S_a^*}|\log f'(r)-a|$ с некоторым a, где a— внешняя точка

по отношению к $\mathcal{M}_{\alpha}(r)$, либо пределом таких решений. Для функций $f(z) \in S_{\alpha}^*$ имеет место следующее интегральное представление:

$$f(z) = z \exp \left\{-2(1-\alpha) \int_{-\pi}^{\pi} \log(1-e^{-it}z) dp(t)\right\}.$$

где p(t) — неубывающая функция с полной вариацией, равной единице. Это доказывается, например, так же, как Г. М. Голузин (7) (или (8), стр. 587) получает интегральное представление для $f \in S_0^*$. Опираясь на это представление и вариационные формулы Г. М. Голузина для классов функций, представимых с помощью интегралов Стильтьеса ((8), стр. 504—507), легко получим вариационные формулы в классе S_a^* , совпадающие с вариационными формулами Г. М. Голузина в классе S_0^* ((8), стр. 508). Далее те же рассуждения, что у Г. М. Голузина ((8), стр. 515 при доказательстве теоремы 2) приводят к выводу, что p(t) для $f_0(z)$ есть кусочно-постоянная функция, имеющая не более двух разрывов, т. е. $f_0(z)$ имеет вид (1).

Теорему для S_0^* фактически доказал еще Г. М. Голузин в 1952 г. (см. (7) или (8), стр. 515, теорема 2, в которой нужно положить $\Phi(w)$ =

=1/(w-a), где a — внешняя для $\mathcal{M}_0(r)$ точка).

Предположим теперь что гипотеза Маркса верна для $\alpha \neq 1/2$, $\alpha \in [0, 1)$, следовательно, для всех 0 < r < 1 образ круга $|z| \le r$ при отображении K_{α} содержит образы $|z| \le r$ при отображении f' для всех $f \in S_{\alpha}^*$, но $K_{\alpha} \in S_{\alpha}^*$, значит,

$$K_{\alpha}'(\{|z| \leq r\}) = \bigcup_{f \in S_{\alpha}^{\bullet}} f'(\{|z| \leq r\}). \tag{2}$$

Г. М. Голузин ((8), стр. 514), используя вариационные формулы для классов функций, представимых интегралом Стильтьеса, доказал, что функция $K_0(z)$ экстремальная в задаче нахождения $\max_{f \in \mathcal{S}_a} |\arg f'(z)|$ при

фиксированном $z \in \Delta$; повторяя дословно его рассуждения, можно показать, что функция $K_{\alpha}(z)$ экстремальная в задаче $\max_{f=S_{\alpha}}|\arg f'(z)|$. Поэтому

равенство (1) можно записать так:

$$\mathcal{M}_{\alpha}(r) = \mathcal{H}_{\alpha}(r)$$
.

В этом виде гипотезу Маркса формулировал еще Робинсон (9).

Теорема 3. При $\alpha = [0, 1)$, $\alpha \neq 1/2$, $\mathcal{M}_{\alpha}(r) \neq \mathcal{H}_{\alpha}(r)$ при r, достаточно близких κ единице (гипотеза Маркса неверна для $\alpha = [0, 1)$, $\alpha \neq 1/2$).

Следуя Хаммелю (4), рассмотрим внутреннюю нормаль к границе $\mathcal{H}_{\alpha}(r)$ (граница $\mathcal{H}_{\alpha}(r)$, 0<r<1, — аналитическая кривая):

$$n_{\alpha}(z) = -\frac{r}{2(1-\alpha)} \frac{\partial}{\partial r} \log \frac{1+z(1-2\alpha)}{(1-z)^{3-2\alpha}} = -\frac{z[2+z(1-2\alpha)]}{(1-z)[1+z(1-2\alpha)]}$$

здесь $z=ze^{i\theta}$.

Введем

$$f_{j}(z) = \frac{z}{(1 - e^{i\alpha_{j}}z)^{2(1-\alpha)}} \in S_{\alpha}^{*}; \quad -\pi < \alpha_{j} \leq \pi; \quad j = 0, 1.$$

В силу теоремы 2 естественно рассмотреть функции $f_s(z) = = f_0^{1-s}(z) f_1^s(z) \in S_\alpha^*$, $0 \le s < 1$. Рассмотрим путь $\log f_s'(r)$, $s \in [0,1]$, в $\mathcal{M}_\alpha(r)$,

соединяющий две точки на границе $\mathcal{H}_{\alpha}(r)$. Если $z_0 = re^{i\alpha_0}$, $z_i = re^{i\alpha_1}$, то

$$\log f_{s}'(r) = 2s (1-\alpha) \log \left(\frac{1-z_{0}}{1-z_{1}}\right) + \log \frac{1+z_{0}(1-2\alpha)}{(1-z_{0})^{3-2\alpha}} +$$

$$+\log\left[1+2S(1-\alpha)\frac{z_1-z_0}{(1-z_1)(1+z_0(1-2\alpha))}\right]. \tag{3}$$

Касательная к пути (3) в точке s=0 будет

$$t_{\alpha}(z_0, z_1) = \log\left(\frac{1 - z_0}{1 - z_1}\right) + \frac{z_1 - z_0}{(1 - z_1)(1 + z_0(1 - 2\alpha))}.$$
 (4)

Положим

$$R_{\alpha}(z_0, z_1) = \frac{t_{\alpha}(z_0, z_1)}{n_{\alpha}(z_0)} =$$

$$= \frac{1-z_0}{z_0(2+z_0(1-2\alpha))} \left[\frac{z_0-z_1}{1-z_1} - (1+z_0(1-2\alpha))\log \frac{1-z_0}{1-z_1} \right].$$
 (5)

Отметим, что в формулах (3) — (5) ветви логарифмов следует выбирать так, чтобы соответственно $\log f_s'(tr)$, $t_\alpha(tz_0, tz_1)$, $R_\alpha(tz_0, tz_1)$ были непре-

рывными функциями от $t \in [0, 1]$ и $\log 1 = 0$.

Знак вещественной части $\operatorname{Re}\{R_{\alpha}(z_0,z_1)\}$ с точностью до положительного множителя есть косинус угла между $n_{\alpha}(z_0)$ и $t_{\alpha}(z_0,z_1)$. Поэтому, если существуют такие z_0 , z_1 , $|z_0|=|z_1|=r$, то $\operatorname{Re}\{R_{\alpha}(z_0,z_1)\}<0$, то путь (3) в $\mathcal{M}_{\alpha}(r)$ лежит частично вне $\mathcal{H}_{\alpha}(r)$ и $\mathcal{M}_{\alpha}(r)\neq\mathcal{H}_{\alpha}(r)$, т. е. предположение Маркса неверно.

Достаточно доказать существование таких z_0 , z_1 для r=1, тогда по непрерывности функции $R_{\alpha}(z_0,z_1)$ найдутся нужные z_0 , z_1 и для r<1, доста-

точно близких к единице.

Введем обозначения:

$$I = \frac{\bar{z}_0 - 1}{2 + z_0 (1 - 2\alpha)}, \quad II = \frac{z_0 - z_1}{1 - z_1} - (1 + z_0 (1 - 2\alpha)) \log \frac{1 - z_0}{1 - z_1}.$$

Нужно показать, что

$$\operatorname{Re} \left\{ R_{\alpha}(z_{0}, z_{i}) \right\} = \operatorname{Re} \left(I \right) \operatorname{Re} \left(II \right) - \operatorname{Im} \left(I \right) \operatorname{Im} \left(II \right) < 0.$$

Полагая при $0 \le \alpha < \frac{1}{2}$, например, $z_0 = i$, $z_1 = e^{-i\phi}$, где $\phi > 0$ столь близко к 0, сколько нам понадобится, легко найдем, что

Re(I) =
$$\frac{1}{|b|^2}(2\alpha - 3)$$
, Im(I) = $-\frac{1}{|b|^2}(2\alpha + 1)$, $b = 2 + z_0(1 - 2\alpha)$;

$$\operatorname{Re}(II) = \frac{1}{|1-z_1|} (1+O(\varphi)), \quad \operatorname{Im}(II) = \frac{1}{|1-z_1|} (1+O(\varphi)).$$

$$\operatorname{Re}\left\{R_{\alpha}(z_{0}, z_{1})\right\} = \frac{1}{|b|^{2}|1-z_{1}|} [2(2\alpha-1)+O(\varphi)].$$

Правая часть при достаточно малых $\phi > 0$ отрицательна. Это опровергает гипотезу Маркса для $\alpha = [0, \frac{1}{2})$.

Для опровержения гипотезы Маркса при $^{1}/_{2}<\alpha<1$ полагаем $z_{0}=-t$, а на z_{1} налагаем прежние условия. Вычисления показывают, что $\operatorname{Re}\{R_{\alpha}(z_{0},z_{1})\}=\frac{1}{\|b\|^{2}|1-z_{1}|}[2(1-2\alpha)+O(\phi)]$. Правая часть при $\phi>0$ до-

статочно малых отрицательна.

Ленинградский государственный университет им. А. А. Жданова

Поступило 8 V 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. Marx, Math. Ann., 107, 40 (1932). ² B. Pinchuk, Duke Math. J., 35, 721 (1968). ³ R. McLanghlin, Trans. Am. Math. Soc., 142, 249 (1969). ⁴ J. A. Pfaltzgraff, Michigan Math. J., 18, № 3, 275 (1971). ⁵ J. A. Hummel, Michigan Math. J., 19, № 3, 257 (1972). ⁶ H. А. Лебедев, Вестн. ленингр. унив., № 8, 29 (1955). ⁷ Г. М. Голузин, Уч. Зап. Ленингр. унив., 144, 85 (1952). ⁸ Г. М. Голузин, Геометрическая теория функций комплексного переменного, «Наука», 1966. ⁹ R. М. Robinson, Trans. Am. Math. Soc., 61, 1 (1947).