УЛК 538.113

ФИЗИЧЕСКАЯ ХИМИЯ

В. К. ВОРОНКОВА, М. М. ЗАРИПОВ, Ю. В. ЯБЛОКОВ, академик АН МССР А. В. АБЛОВ, М. А. АБЛОВА

ПАРАМАГНИТНЫЙ РЕЗОНАНС Co(II) В ИСКАЖЕННОЙ ТЕТРАЭДРИЧЕСКОЙ КООРДИНАЦИИ

Настоящая работа посвящена изучению методом э.п.р. тетраэдрических комплексов Co(II) типа $CoX_2 \cdot A_2$, где X - Cl, Br, A - однозамещенные в бензольном ядре производные анилина. Предыдущее исследование соединений такого типа с пиридином и его производными в качестве лиганда A дало первый пример анализа иона Co(II) в поле сильно иска-

женного тетраэдра (симметрия C_{2v}) (1). Важность дальнейшего изучения соединений этого типа обусловлена необходимостью расширить знания о свойствах Co(II) в различных тетраэдрических структурах, о влиянии на них искажений тетраэдра и о роли природы лигандов в формировании

этих факторов.

Исследовались поликристаллические образцы. в которых молекулы СоХ2 · А2 были разбавлены в соответствующих соединениях цинка при соотношениях Co: Zn от 1:10 до 1:50. Тетраэдрическое строение этих соединений и их изоструктурность доказаны рентгенографически $\binom{2-4}{2}$. Измерения проводились на радиоспектрометре РЭ13-01, приспособленном для работы при низких температурах. Типичный спектр э.п.р., записанный при 4,2° K, приведен на рис. 1. При температуре жидкого азота интенсивность сигнала резко уменьшается, а ширина его увеличивается. Температурная зависимость спектра и его вид аналогичны рассмотренным в (1); спектры пиридиновых комплексов отличаются только меньшей анизотропией. Отсутствие тонкой структуры спектра указывает на значительную величину расщепления б нижнего орбитального синглета за счет отклонения симметрии кристаллического поля от кубической (рис. 2). Это показывает, что наблюдаемый сигнал относится к переходу только внутри нижнего дублета и позволяет описать спектр спин-гамильтонианом

$$\mathcal{H} = g_x \beta H_x S_x' + g_y \beta H_y S_y' + g_z \beta H_z S_z'$$
 (1)

g-тензора, определенные по методике (⁵), для

ликристаллического обс эффективным спином S'=1/2. Составляющие при $T = 4.2^{\circ} \text{ K}$ спектров э.п.р. порошков в случае трехосной анизотропии $\{g\}$, приведены в табл. 1. Сверхтонкая структура не разрешается. Наблюдаемую анизотропию g-тепзора нельзя описать в приближении осевой симметрии кристаллического поля. Учет ромбической компоненты приводит к перемешиванию спиновых функций и основное состояние

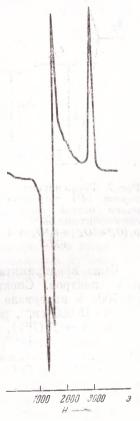


Рис. 1. Спектр э.н.р. поразца CoCl₂·2*n*-толуидин

$$\psi_{1s} = \alpha \left| -\frac{3}{2} \right\rangle + \beta \left| \frac{1}{2} \right\rangle; \quad \psi_{2s} = \alpha \left| \frac{3}{2} \right\rangle + \beta \left| -\frac{1}{2} \right\rangle. \tag{2}$$

Величина β (а следовательно, и α , так как $\alpha^2 + \beta^2 = 1$) зависит от соотношения между ромбической и осевой компонентами кристаллического поля, для характеристики которого введен параметр $\gamma = B_2^2/B_2^\circ$. Коэффициенты β и γ связаны соотношением

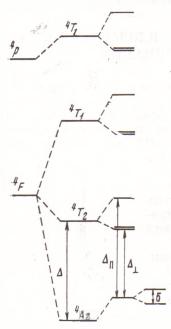


Рис. 2. Расщепление 4F и 4P термов (d^7) тетраэдрическим полем осевой симметрии и спин-орбитальной связью $b_4(O_4{}^0+5O_4{}^4)+b_2{}^2O_2+b_4{}^0O_4+\lambda LS$

$$\beta^{2} = (2+3\gamma^{2}+2\sqrt{1+3\gamma^{2}})/(2+6\gamma^{2}+2\sqrt{1+3\gamma^{2}}).$$
(3)

Для сравнения свойств изученных соединений необходимо вычислить величину у для каждого случая. Для этой цели удобно использовать теоретические выражения для компонент g-тензора, в которых орбитальные и спиновые вклады разделены:

$$g_{x}=g_{x}^{0}\cdot 2(\beta^{2}+\overline{V3}\beta\alpha), \quad g_{y}=g_{y}^{0}\cdot 2(\beta^{2}-\overline{V3}\beta\alpha), g_{z}=g_{z}^{0}\cdot (\beta^{2}-3\alpha^{2}).$$
 (4)

Здесь g_i^0 — значение g-тензора, характеризующее состояние с $S=^3/_2$ в отсутствие большого расщепления δ . Если пренебречь перемешиванием функций триплетов 4T_2 и 4T_1 , которое имеет место при низкой симметрии, это значение определяется выражением

$$g_i^0 = 2 - 8\lambda K_i / \Delta_i. \tag{5}$$

Видно, что анизотропия величины g_1^0 является следствием расщепления триплета *T_2 при симметрии C_{2v} на три уровня и, возможно, разной степени ковалентности соответствующих орбиталей (уменьшение константы спин-орбитальной связи по сравнению с величиной, соответствующей свободному иону, учтено параметром K_1).

Была предпринята попытка определить расшепления Δ_i из электронных спектров. Спектры отражения сняты на спектрометре «Unicam SP-700» в интервале $5000-20\,000$ см⁻¹. Наблюдалась линия в области $17\,000-15\,000$ см⁻¹, расщепленная на три компоненты (отнесена к переходам ${}^4A_2 \rightarrow {}^4T_1(P^*)$), и широкая линия в области 8000 см⁻¹, отнесенная к переходам ${}^4A_2 \rightarrow {}^4T_1({}^4F)$. Из положения этой линии оценена величина Dq (для $CoCl_2 \cdot 2n$ -толуидин, $Dq \approx 433$ см⁻¹, для $CoCl_2 \cdot 2m$ -анизидин ≈ 422 см⁻¹; для $CoBr_2 \cdot 2m$ -анизидин ≈ 416 см⁻¹). Экспериментально получить Δ_i не удалось. Поэтому, используя средние значения $\Delta = 10Dq$, оценили возможные величины параметра K ($K \approx 0.77 - 0.79$).

Нетрудно заметить, что уравнения (4) легко разрешаются относительно β , если предположить $g_x^0 = g_y^0$. Тогда γ можно получить из (3). Найденные таким путем γ и g_i^0 приведены в табл. 2. Различия величины g_x и g_y обусловлены в большей мере перемешиванием спиновых состояний, чем анизотропией орбитального вклада, приводящего к различию g_x^0 и g_y^0 . Поэтому ошибка при вычислении γ в этом приближении должна быть несущественной.

Следует отметить, что величины ү, приведенные в табл. 2, указывают на перемешивание спиновых функций в основном состоянии, а следовательно, на заметную (хотя и меньшую, чем в соединениях пиридинового

ряда (1)) ромбичность кристаллического поля вокруг иона кобальта в

рассматриваемых веществах *.

Сравнение нараметров, полученных для изученных соединений, свидетельствует о чувствительности величины γ к замене заместителей в анилине. Орбитальные же вклады в g_i претерпевают изменение главным образом при переходе от хлоридов к бромидам и в меньшей степени реагируют на вид заместителя в A. Это позволяет считать, что замена

 $\label{eq:Tabulantih} \mbox{ Таблица 1}$ Экспериментальные значения g-тензора исследованных галогенидов Co (II) при $T=4,2^{\circ}$ К

Соединение	$g_x \pm 0.02$	g _y ± 0,005	$g_z \pm 0.05$	
$\begin{array}{l} {\rm CoCl_2 \cdot 2} n{\rm -}{\rm H_2NC_6H_4} -\!$	4,96	4,063	2,210	
	5,67	3,171	2,009	
	5,25	3,811	2,157	
	5,62	3,374	2,051	

Таблица 2

Параметры, вычисленные из уравнений (4) при условии $g_x^{\,0} = g_y^{\,0}$

Соединение	β ²	Y	g ⁰	g	⟨g⁰⟩	$\begin{vmatrix} \delta, & \text{cm}^{-1} \\ (\lambda & -179 \\ \div & -150 & \text{cm}^{-1} \end{vmatrix}$
$\begin{array}{c} {\rm CoCl_2 \cdot 2n\text{-}H_2NC_6H_4 - CH_3} \\ {\rm CoCl_2 \cdot 2m\text{-}H_2NC_6H_4 - OCH_3} \\ {\rm CoBr_2 \cdot 2n\text{-}H_2NC_6H_4 - CH_3} \\ {\rm CoBr_2 \cdot 2m\text{-}H_2NC_6H_4 - OCH_3} \end{array}$	0,9967 0,9740 0,9917 0,9794	0,067 0,194 0,107 0,171	2,240 2,242 2,231 2,234	2.262 2,268 2,284 2,293	2,255 2,259 2,266 2,273	4,1—3,4 4,8—3,9 9,54—7,95 10,6—8,8

n-толуидина на m-анизидин увеличивает ромбическое искажение кристаллического поля вокруг кобальта, тогда как осевая компонента оста-

ется практически неизменной.

Можно ожидать, что наблюдаемое изменение небольшого по абсолютной величине параметра B_2^2 не должно сильно проявляться в изменении расщепления δ . В случае осевой симметрии кристаллического поля расщепление δ нижнего орбитального синглета на два спиновых дублета связано с орбитальными вкладами в составляющие g-тензора следующим образом (7):

$$\delta = -\frac{8\lambda^2 K_{\parallel}}{\Delta_{\parallel}} + \frac{8\lambda^2 K_{\perp}}{\Delta_{\perp}}.$$
 (6)

Хотя присутствие ромбического искажения делает такое определение δ не очень строгим, оценки по (6) приведены в табл. 2 (константа λ взята в интервале $-179 \div -150$ см⁻¹).

Полученное в рамках принятой схемы анализа экспериментальных данных некоторое увеличение $\langle g^0 \rangle$ для $\mathrm{CoBr_2A_2}$ по сравнению с $\mathrm{CoCl_2A_2}$ соответствует расположению лигандов Br и Cl в спектрохимическом ряду и уменьшению Dq для бромидов. Отметим также, что в бромидах по данным э.п.р. наблюдается увеличение осевого искажения комплексов.

Для всех рассмотренных соединений справедливо неравенство $g_{\parallel}^{\ 0} < g_{\perp}^{\ 0}$, что в модели теории кристаллического поля соответствует силющенному тетраэдру. Увеличение анизотропии $g_{i}^{\ 0}$ в бромидах по сравнению с хло-

^{*} Можно привести еще один известный нам пример вычисления γ для Co(II), внедренного в [(C₂H₅)₄N]₂ZnCl₄, где γ =0,037 (6).

ридами должно быть связано в таком приближении с большим отклонением угла L-Co-L в $CoBr_2A_2$ от тетраэдрического, чем в $CoCl_2A_2$. Отметим, что рентгеноструктурный анализ привел к заключениям (2) о почти правильном тетраэдрическом окружении кобальта в интересующих соединениях. Выводы о симметрии комплексов, сделанные на основании данных э.п.р., свидетельствуют о тонких возможностях этого метода. С другой стороны, не исключено, что немаловажную роль в формировании осевой и ромбической компонент кристаллического поля играет электронная неэквивалентность лигандов.

Казанский физико-технический институт Академии наук СССР Институт химии Академии наук МССР Киппинев Поступило 9 VII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. В. Яблоков, В. К. Воронкова и др., ФТТ, 13, 997 (1971). ² Г. Б. Бокий, Т. И. Малиновский, А. В. Аблов, Кристаллография, 1, 49 (1956). ³ А. В. Аблов, Т. И. Малиновский, ДАН, 123, 677 (1958). ⁴ А. В. Аблов, З. П. Бурнашева, ЖНХ, 5, 604 (1960). ⁵ F. K. Кпец b ü h l, J. Chem. Phys., 33, 1074 (1966). ⁶ G. E. Shankle, J. N. МсЕlearney et al., J. Chem. Phys., 56, 3750 (1972). ⁷ А. Абрагам, Б. Блини, Электронный парамагнитный резонанс переходных ионов, 1, М., 1972.