Доклады Академии наук СССР 1973. Том 212, № 5

УДК 616-006.6-092.9:612.015.32

ЦИТОЛОГИЯ

Академик АН УССР Р. Е. КАВЕЦКИЙ, С. Д. КАЗЬМИН

ЭНЕРГЕТИКА МИТОТИЧЕСКОГО ЦИКЛА КЛЕТОК РАКА ЭРЛИХА

Разработка методов синхронизации популяций, растущих в культуре ткани, дала возможность приступить к экспериментальному анализу биохимических процессов, лежащих в основе репродуктивного цикла клеток (¹,²). Вместе с тем, такого рода информация о метаболизме клеток, находящихся в условиях іп vivo, весьма ограничена, а данные об энергетике митотического цикла опухолевых клеток в литературе отсутствуют. Это обстоятельство, затрудняющее понимание причин высокой пролиферативной активности тканей опухолей при низкой их способности к дифференцировке, и побудило нас исследовать энергетику злокачественных клеток, находящихся на различных стадиях митотического цикла.

Объектом исследования служили клетки асцитного рака Эрлиха, взятые у животных в период экспоненциального роста опухоли. Разделение нопуляции на фракции проводили в колонке объемом 3,5 л методом свободного оседания при g=1 (3 , 4). В емкость помещали 25 мл клеточной взвеси ($10-13\cdot 10^6$ клеток/мл) и через нижнее отверстие медленно заполняли весь объем раствором Рингера, содержащим небольшие количества ЭДТА (1 мM) и неорганического фосфата (1,5 мM), 5% среды 199 и возрастающие количества сахарозы. Слив колонки и деление объема на

фракции производили спустя 2,5 часа после начала опыта.

Маркирование фракций велось по содержанию ДНК, в пересчете на клетку, и по включению метки. Н³-тимидин вводили животным в дозе 20 µС на 1 мышь за полчаса до забоя. Определение ДНК проводили по методу Дише (⁵), холестерина — по реакции с уксусным ангидридом (˚), белка — по Лоури, подсчет клеток — в камере Горяева. Скорость реакций энергетического обмена измеряли при инкубации клеток в среде 199. Дыхание определяли полярографическим методом, гликолиз — по накоплению лактата за 1 час (¹). Содержание ДНК, белка и холестерина выражали в пикограммах, скорости реакций — в пикомолях за 1 час в пересчете на 1 клетку. На графиках нанесены среднеарифметические значения 3—4 измерений.

На рис. 1 приведены данные по разделению популяции опухолевых клеток методом, описанным выше. С удалением от старта количество ДНК в клетках фракций планомерно нарастает, так что типичная S-образная кривая переходит в плато при двойном, по сравнению с начальными фракциями, содержании ДНК. Кривая числа меченых клеток имеет максимум, приходящийся на середину периода, когда количество ДНК в клетках удваивается. Эти данные позволяют заключить, что клетки опухоли Эрлиха так же, как и клетки лейкемии АКК (4), распределяются по высоте колонки в соответствии с хронологической последовательностью фазмитотического цикла.

На рис. 2 приведены данные об интенсивности дыхания, гликолиза и ресинтеза АТФ в клетках опухоли. Все три кривые во многом сходны, хотя и не являются тождественными. Обращает на себя внимание волнообразный характер повышения активности обеих базисных реакций энергообмена. Первый подъем начинается на самых ранних этапах цикла: уже в фазе G₁ почти синхронно активируются и дыхание, и гликолиз. С нача-

лом синтеза ДНК повышение энергетического потенциала приостанавливается. Второй подъем гликолитической активности начинается с середины S-фазы. Уровень же дыхания во время синтеза ДНК поддерживается постоянным и начинает возрастать лишь после завершения синтеза. По-видимому, в клетках рака Эрлиха в период редубликации ДНК вы-

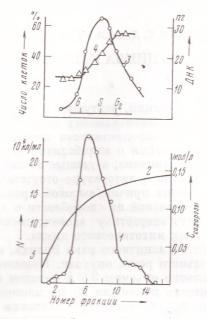
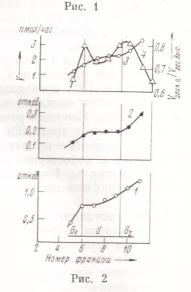
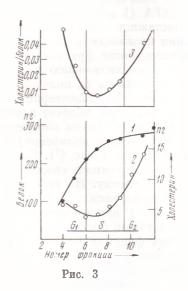




Рис. 1. Разделение клеток рака Эрлиха методом свободного оседания в градиенте сахарозы. I — концентрация клеток во фракциях (N); 2 — концентрация сахарозы в среде разделения; 3 — число меченых тимидином клеток; 4 — количество ДНК в клетках фракций

Рис. 2. Энергетический обмен в клетках опухоли. I — интенсивность гликолиза; 2 — интенсивность дыхания; 3 — скорость ресинтеза $AT\Phi$ (V); 4 — отношение скорости ресинтеза $AT\Phi$ в гликолитическом цикле ($V_{\text{глик.л}}$) к скорости ресинтеза $AT\Phi$ при дыхании ($V_{\text{рес. дых}}$). При расчете принято: $AT\Phi/\text{лактат}=4$, $AT\Phi/\text{O}=6$. Температура 37°

Рис. 3. Содержание суммарного белка (1), холестерина (2) и отношение холестерин/белок (3) в клетках рака Эрлиха

ключаются реакции, ведущие к усилению дыхания, т. е. эти два процесса (активация дыхания и редубликация ДНК) в известном смысле альтернативны.

На основании полученных данных о продуцировании лактата и потреблении кислорода можно оценить скорость ресинтеза АТФ и удельный вес гликолитического цикла в энергетике опухолевых клеток. Данные о ресинтезе АТФ при работе энергосистемы в целом приведены на рис. 2. Движение опухолевых клеток по циклу сопровождается не только активацией энергообмена, но и изменением соотношения парциальных мошностей обоих процессов, лежащих в его основе. На это указывает закс-

померное изменение величины отношения скоростей $V_{\rm глив}/V_{\rm тых}$. Кривая имеет отчетливо выраженный экстремальный характер с ивумя максимумами, приходящимися на периоды переходов клеток $G_1 \rightarrow S$ и $S \rightarrow G_2$. В целом же в период синтеза ЛНК удельный вес гликолитического пикла в энергетике клеток оказывается выше, чем в пре- и постсинтетический

периоды.

Относительное увеличение гликолиза в фазе S представляется вполне закономерным. Включение гликолиза стимулирует трансаминазные реакпии в пикле Кребса (8) и. следовательно, активирует образование аспартата — одного из исходных соединений при синтезе пуриновых и пиримидиновых оснований de novo. Известно, что глютамин и глюкоза в несколько раз повышают включение метки в нуклеиновые кислоты клеток рака Эрлиха (9, 10). Эти данные позволяют предполагать, что относительное увеличение гликолиза в период синтеза ДНК обусловлено не энергетическими запросами, а связано с особенностями авторегуляции пластического обмена в этот перпол.

На рис. З приведены данные о содержании белка и холестерина в клетках опухоли. Около 80% суммарного белка накапливается в основном в первой половине цикла (фаза G, и первая половина синтетической фазы). Во второй подовине пикла активность белкового синтеза заметно снижается. Содержание холестерина в клетках не коррелирует с содержанием белка. Накопление этого стерпна начинается во второй половине цикла (конец S-фазы, фаза G₂), т. е. в период, когда образование белка замедляется. Вследствие этого отношение холестерин/белок не постоянно на протяжении цикла и имеет резко выраженный минимум, приходящийся

на период синтеза ЛНК.

При сопоставлении данных рис. 2 п 3 обращает на себя внимание соответствие между волнообразным ростом энергетического потенциала клеток и накоплением в них белка и холестерина. По-видимому, первый полъем энергетики обусловлен в основном потребностями в энергии для обеспечения биосинтеза белка, а второй, вероятнее всего, связаи с потребностями в энергии для построения клеточных мембран, одним из компонентов которых является холестерин, созданием ахроматинового митотического аппарата и полготовкой к митозу.

Институт проблем онкологии Академии наук УССР KWER

Поступило 11 VI 1973

нитированная литература

¹ V. Monesi, In: Handbook of Molecular Cytology, Amsterdam — London, 1969, p. 473. ² R. R. Klevecz, F. H. Rubble, Science, 159, 634 (1968). ³ E. A. Peterson, W. H. Evans, Nature, 214, 824 (1967). ⁴ M. Omine, S. Perry, J. Nat. Cancer Inst., 43, 697 (1972). ⁵ Z. Dische, Mikrochemie, 2. 4 (1930). ⁶ К. И. Розенцвейт, Лаб. дело, № 19, 43 (1962). ⁷ В. С. Асатнани, Ферментативные методы анализа, «Наука», 1969. стр. 186. ⁸ С. Д. Казьмин, Биохимия, 38, № 4 (1973). ⁹ А. К. Белоусова, Т. И. Атабекова, Биохимия, 25, 901 (1960). ¹⁰ Н. Нагrington, J. Biol. Chem., 233, 1190 (1958).