УЛК 547.922.5+547.598.5+547.571.3

ХИМИЯ

Г. А. ТОЛСТИКОВ, В. П. ЮРЬЕВ, И. А. ГАЙЛЮНАС, член-корреспондент АН СССР С. Р. РАФИКОВ

К ВОПРОСУ О СТЕРЕОХИМИИ ЭПОКСИДИРОВАНИЯ ЦИКЛИЧЕСКИХ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИЙ

Мы исследовали стереонаправленность эпоксидирования циклических непредельных соединений гидроперекисью трет.-амила в присутствии MoCl_5 или $\text{Mo}(\text{CO})_6$ и комплексом MoO_5 с гексаметилфосфортриамидом $(\text{MoO}_5 \cdot \Gamma \text{M}\Phi \text{TA})$. В качестве реагента сравнения была использована надбензойная кислота. Объектами окисления служили следующие непредельные стероиды: холестен-5(I), 3α -хлор-холестен-5(II), 3β -окси-холестен-5 (III), 3β -окси-спиростен-5(IV), 3β -ацетоксихолестен-5(V), 3β -ацетокси-Спиростен-5(VI), 3β -ацетокси-N-ацетилсоласоден-5(VII), 3β -ацетоксиандростен-5-он-17(VIII), 3β -ацетоксипрегнадиен-5,16-он-20(IX), 3β -этилендиоксиспиростен-5(X) и 3β -ацетокси-4,4-диметилхолестен-5(XI).

Эпоксидирование стероидов надбензойной кислотой изучено довольно полно. Известно, что 3β -ацилокси- Δ^5 -стероиды дают смеси окисей, в которых преобладают (65-85%) 5а,6а-эпимеры (XII). Напротив, 3-этилендиокси- Δ^5 -стероиды превращаются преимущественно в $5\bar{\beta}$,6 β -окиси (XIII) из-за деформационных искажений колец А и В (1). Окисление названных стероидов гидроперекисью трет.-амила мы проводили в бензольном растворе при 80° с использованием эквимолярного количества окислителя в присутствии MoCl₅, концентрация которого в реакционной смеси составляла $10^{-4}-10^{-5}$ мол/л. Эпоксидирование при помощи комплекса МоО₅. ·ГМФТА вели при 80° в растворе бензола, применяя 1,2-1,3 мол. окислителя на 1 мол. стероида. Окисление надбензойной кислотой проводили в хлороформе при комнатной температуре. Полученные смеси эпимерных окисей анализировали с помощью спектров п.м.р., которые записывали на приборе BS-487B для растворов в CDCl₃, внутренний стандарт — гексаметилдисилоксан. Расчет содержания эпимеров проводили по площади сигналов С6-протонов, которые располагаются при следующих значениях поля:

2,78 и 2,90 м.д. $(5\alpha,6\alpha$ - и $5\beta,6\beta$ -оксидохолестаны),

2,72 и 2,90 м.д. ($5\alpha,6\alpha$ - и $5\beta,6\beta$ -оксидо- 3α -хлорхолестаны), 2,80 и 2,68 м.д. ($5\alpha,6\alpha$ - и $5\beta,6\beta$ -оксидо- 3β -оксистероиды), 2,80 и 3,00 м.д. ($5\alpha,6\alpha$ - и $5\beta,6\beta$ -оксидо- 3β -ацетоксистероиды),

2,72 и 3,00 м.д. $(5\alpha,6\alpha$ - и $5\beta,6\beta$ -оксидо- 3β -этилендиоксиспиростаны), 3,00 и 3,18 м.д. $(5\alpha,6\alpha$ - и $5\beta,6\beta$ -оксидо-4,4-диметил- 3β -ацетоксихолестаны).

Результаты опытов приведены в табл. 1.

Как видно, окисление реактивом $MoO_5 \cdot \Gamma M\Phi TA$ протекает с исключительно высокой стереоизбирательностью. Конфигурация окисей соответствует направлению атаки реагента с пространственно наименее экранированной стороны. Так, большинство Δ^5 -стероидов превращаются почти исключительно в 5α ,6 α -окиси, а 3-этилендиоксиспиростен-5(X) дает только 5β ,6 β -окись. Характерно, что 4,4-диметилстероид (XI) совершенно не окисляется из-за сильного экранирования двойной связи метильными группами, тогда как надкислота довольно легко эпоксидирует это соединение.

Таким образом, стерические затруднения являются главным фактором, определяющим полноту и стереонаправленность эпоксидирования с помощью комплекса MoO_5 - $\Gamma \text{M}\Phi \text{TA}$, который можно рекомендовать в каче-

стве стереоселективно лействующего окислителя.

В наших прежних исследованиях по окислению 3β -ацетокси- Δ^5 -стерондов (IV), (VI)—(VIII) с помощью гидроперекиси трет.-амила в присутствии $MoCl_5$ мы выдвинули предположение о возможном механизме реакции гидроперекисного эпоксидирования, включающем образование π -комилекса (2). В качестве главного аргумента служил факт установления необычно высокого содержания 5β , 6β -окисей в смеси эпимеров. Однако более детальное исследование стереохимии окисления с привлечением широкого круга соединений позволило установить, что состав смеси 5β , 6β -окисей сильно изменяется в зависимости от типа заместителя при C_3 .

Таблица 1

Окисля- емое сое- динение	C₀H₅CO₃H		$\Gamma\Pi TA + MoCl_5$		$MoO_5 \cdot \Gamma M\Phi TA$	
	5α, 6α	5β, 6β	5α, 6α	5β, 6β	5α, 6α	5β, 6β
I II III IV V VI VIII VIII IX X	90 85 90 90 70 65 80 65 65 35	10 15 10 10 30 35 20 35 35 65	55 60 70 55 30 35 35 20 35 0	45 40 30 45 70 65 65 80 65	100 95 90 90 80 95 95 100 90	0 5 10 10 20 5 5 0 10
XI	80	20	Реакция не идет			

Так, при действии реагента $\Gamma\Pi TA+MoCl_5$ на стероиды I-IV с заместителями H, Cl и OH были получены смеси окисей с преобладанием 5α , 6α -эпимеров. Это означает, что направление эпоксидирования гидроперекисью и надбензойной кислотой в основном совпадает, хотя стереоспецифичность действия последней заметно выше.

Введение 3β -ацетоксигруппы (соединения V—IX) вызывает ранее отмеченное увеличение содержания 5β , 6β -окисей. Особенно примечателен 3β -ацетокси-андростен-5-он-17 (VIII), дающий 5β , 6β -окись с выходом 80%. Исключительно высокая стереоселективность наблюдается при эпоксидировании 3-этилендиоксистероида (X), который полностью превращается в 5β , 6β -окись. Необходимо отметить, что в опытах с надбензойной кислотой была получена смесь 5β , 6β - и 5α , 6α -энимеров в соотношении 65:35.

$$R = H_{2}, \qquad H \qquad H \qquad O \qquad R_{1} = R_{2} = H, CH_{3}$$

$$CH_{3} \qquad O \qquad R_{1} = R_{2} = H, CH_{3}$$

$$CH_{3} \qquad O \qquad CH_{3} \qquad O \qquad CH_{3}$$

$$CH_{3} \qquad O \qquad CH_{3} \qquad O \qquad CH_{3}$$

Повышение выхода «аномальной» 5β , 6β -окиси при окислении 3β -ацетокси- Δ^5 -стероидов и «нормальной» 5β , 6β -окиси при эпоксидировании 3-этилендиокси- Δ^5 -стероида, как нам кажется, имеет одинаковые причины. Наиболее вероятным объяснением является комплексообразование металла не с двойной связью, а с кислородными группировками. Близость последних к двойной связи позволяет считать, что окисление двойной связи протекает с участием комплексов типа XIV—XV. Способность молибдена к комплексообразованию с кислородсодержащими лигандами хорошо известна (3).

Сильная зависимость активности реагента $\Gamma\Pi TA+MoCl_5$ от пространственных затруднений видна на примере окисления 4,4-диметилстероида (XI). Наличие двух метильных группировок, перекрывающих доступ к двойной связи как с α -, так и β -стороны, приводит к тому, что это соединение не окисляется даже при продолжительном (40 час., 80°) воздейст-

вии реагента.

Таким образом, стереонаправленность эпоксидирования циклической двойной связи гидроперекисью трет.-амила, катализированного MoCl₅, в отсутствие близко расположенных комплексообразующих заместителей лимитируется главным образом стерическими факторами. Естественно, что эпимерный состав окисей при этом близок к составу смесей окисей, получаемых при действии надбензойной кислоты.

Институт химии Башкирского филиала Академии наук СССР Уфа Поступило 16 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ K. Bingham, T. Blaiklock et al., J. Chem. Soc. C, 1970, 2330. ² Г. А. Толстиков, У. М. Джемидов и др., ДАН, 208, № 2, 376 (1973). ⁸ Органические синтезы через карбонилы металлов, 1970, стр. 133.