УДК 577.3 *БИОХИМИЯ*

Ю. П. КОЗЛОВ, В. Б. РИТОВ, В. Е. КАГАН

ТРАНСПОРТ Ca²⁺ И СВОБОДНОРАДИКАЛЬНОЕ ОКИСЛЕНИЕ ЛИПИДОВ МЕМБРАН САРКОПЛАЗМАТИЧЕСКОГО РЕТИКУЛУМА

(Представлено академиком Г. М. Франком 7 V 1973)

В качестве объекта для изучения связи свободнорадикального окисления липидов со структурно-функциональной целостностью биологических мембран (1-4) в настоящей работе выбраны фрагменты саркоплазматического ретикулума (ф.с.р.) скелетных мышц, в мембраны которых встроена Ca²⁺-зависимая ATФаза, осуществляющая транслокацию Ca²⁺ внутрь

везикул ф.с.р. (⁵, ⁶).

Методы и материалы. Фрагменты саркоплазматического ретикулума выделяли из белых скелетных мышц кролика по методу (7). Липиды экстрагировали по модифицированной методике Фолча (8). Реактивы: АТФ-Nа₂, гистидин, трис — «Reanal», ЭГТА — фирмы «Schuchardt»; хроматографически чистая линоленовая кислота получена из препарата квалификации х.ч. («Союзреактив»). Гидроперекись линоленовой кислоты выделена из продуктов окисления линоленовой кислоты в тонкой пленке кислородом воздуха при 37° по методике (9). Остальные реактивы — марки х.ч. («Союзреактив»). Поглощение Са²+ и АТФазную активность регистрировали по изменению рН в результате гидролиза АТФ Са²+-зависимой АТФазой (10). Для регистрации транспорта Са²+ применялось также нефелометрическое определение содержания оксалата кальция в везикулах ф.с.р. (11). Среда инкубации для измерения поглощения Са²+ и АТФазной активности ф.с.р.: 100 мМ NaCl, 2 мМ MgCl₂, 1,9 мМ АТФ, 5 мМ оксалат натрия, 42 μМ СаCl₂, 10 мМ трис, рН 7,2, 37°, ~100 μг белка ф.с.р. в 1 мл, объем среды инкубации 4 мл.

Белок определяли по биуретовой реакции. О накоплении гидроперекисей полиненасыщенных жирных кислот в мембранах ф.с.р. судили по величине поглощения раствора липидов ф.с.р. в этаноле — гептане (2:1) при 234 мµ (12); количественный анализ продуктов свободнорадикального окисления липидов ф.с.р. проводили методом полярографии со ртутно-капель-

ным электродом $(^{13})$.

Результаты и обсуждение. В качестве индукторов свободнорадикального окисления липидов в мембранах ф.с.р. были использованы аскорбиновая кислота и ионы Fe^{2+} (1 , 2). Преинкубация ф.с.р. с аскорбиновой кислотой в присутствии $2-6~\mu M$ FeSO₄ приводит к резкому снижению скорости поглощения Ca^{2+} . Как видно из рис. 1, степень ингибирования поглощения Ca^{2+} увеличивается по мере увеличения времени преинкубации ф.с.р. с аскорбиновой кислотой п $FeSO_4$, и через $10-30~\mu M$ мин. (в зависимости от концентрации $FeSO_4$) ф.с.р. полностью теряют способность поглощать Ca^{2+} . тогда как скорость гидролиза $AT\Phi$ под действием Ca^{2+} -зависимой $AT\Phi$ азы остается на достаточно высоком уровне, хотя в некоторых опытах наблюдалось достоверное ингибирование активности $AT\Phi$ азы (табл. 2). Ингибирующее действие аскорбиновой кислоты и ионов железа проявляется только в определенной области их концентраций: оптимальная концентрация аскорбиновой кислоты составляет $0,2-0,4~\mu M$, а $FeSO_4$ $2-6~\mu M$.

Обязательность совместного присутствия ионов железа и аскорбиновой кислоты, экстремальный характер концентрационных зависимостей, а так-

же монотонное нарастание их ингибирующего действия во времени характерны для процесса аскорбат-зависимого перекисного окисления липидов (1 , 2). Действительно, как видно на рис. 1, параллельно с ингибированием поглощения $\mathrm{Ca^{2^{+}}}$ (рис. 1, 4) наблюдается накопление гидроперекисей в полиненасыщенных ацилах мембранных фосфолипидов (рис. 1, 5).

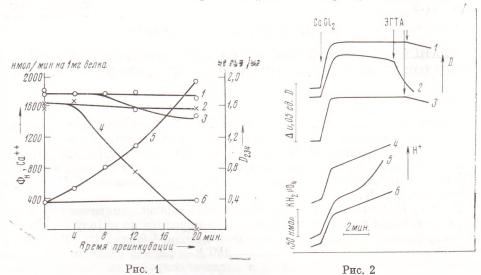


Рис. 1. Ингибирование поглощения Ca^{2+} при индукции свободнорадикального окисления липидов мембран ф.с.р. аскорбиновой кислотой $(0,2\,\mathrm{M}M)$ и $\mathrm{FeSO_4}$ $(6\,\mu M)$. Ф.с.р. $(5\,\mathrm{mr/m})$ инкубировали при 37° в среде, используемой для регистрации их функциональной активности в отсутствие $\mathrm{AT\Phi}$, и через различные промежутки времени отбирали пробы для определения $\mathrm{AT\Phi}$ азной активности (1,3) поглощения $\mathrm{Ca^{2+}}$ (2,4) и накопления гидроперекисей (5,6). 1,2,6- контроль, 3,4,5- преинкубация с аскорбиновой кислотой и $\mathrm{FeSO_4}$

Рис. 2. Кинетика транспорта Ca^{2+} (1, 2, 3) и гидролиза $AT\Phi$ (4, 5, 6) в контроле (1, 4), в присутствии аскорбиновой кислоты (0,2 мМ) и 2 µмол. $FeSO_4$ (2, 5) в присутствии аскорбиновой кислоты, $FeSO_4$ и α -токоферола (10 μ M) или только аскорбиновой кислоты (3, 6). Аскорбиновую кислоту и $FeSO_4$ добавляли в пробы за 4 мин. до введения $CaCl_2$; 20 μ л раствора α -токоферола в этаноле добавляли непосредственно перед аскорбиновой кислотой. ЭГТА 0,25 мМ, остальные условия см. в тексте

Таким образом, индуцированное в мембранах ф.с.р. свободнорадикальное окисление липидов сопровождается уменьшением эффективности системы транспорта Ca^{2+} (т. е. снижением величины $Ca^{2+}/AT\Phi$), причем уменьшение отношения $Ca^{2+}/AT\Phi$ во времени вполне удовлетворительно коррелирует с регистрируемым полярографически накоплением гидроперекисей в липидах ф.с.р. (табл. 1). Дальнейшим подтверждением взаимосвязи процессов свободнорадикального окисления мембранных липидов и «разобщения» поглощения Ca^{2+} с гидролизом $AT\Phi$ являются результаты, представленные в табл. 2. Ингибиторы свободнорадикальных реакций (α -токоферол, 4-метил-2,6-дитретбутилфенол) предотвращают индуцируемое липопереокисление в мембранах ф.с.р. и оказывают защитное действие на систему активного транспорта Ca^{2+} .

Естественно предположить, что наблюдаемое в этих условиях уменьшение величины $Ca^{2+}/AT\Phi$ имеет в своей основе увеличение пассивной проницаемости мембран ф.с.р. для ионов Ca^{2+} , тем более, что $AT\Phi$ аза «переокисленных» везикул по-прежнему остается Ca^{2+} -зависимой. На рис. 2 представлены изменения оптической плотности и рН суспензии ф.с.р., отражающие соответственно кинетику транспорта Ca^{2+} и гидролиза $AT\Phi$ в различных условиях инкубации. Как впдно из рис. 2, 1, 4, в контроле поглощение добавленного Ca^{2+} (нарастание оптической плотности) сопровождается синхронной активацией Ca^{2+} -зависимой $AT\Phi$ азы (закисление

среды), и после исчерпания Ca²⁺ в наружной среде не наблюдается изменений оптической плотности и скорости закисления среды во времени. Медленное уменьшение оптической плотности после добавления специфического комплексона Ca²⁺ — ЭГТА является результатом выхода Са²⁺ из ф.с.р., причем скорость «просветления» пропорциональна рости выхода Са²⁺ (¹⁴). Инкубация ф.с.р. с аскорбиновой кислотой и ионами железа приводит к значительно более быстрому «просветлению» суспензии ф.с.р. в ответ на добавку $\Im \Gamma TA$ (рис. 2, 2), т. е. увелипассивную пронидаемость

Таблица 1
Накопление гидроперекисей липидов и изменение величины Ca²⁺/ATФ во времени при инкубации ф.с.р. с аскорбиновой кислотой и ионами железа

Время инкуба- ции, мин.	Содержание гидро- перекисей, (нмол. на 1 мг липидов)	Са²+/АТФ
0 4 8 12 20	2,6 5,3 10,0 14,1 16,4	0,90 0,95 0,66 0,49 0,00

Примечание. Здесь и в табл. 2 условия опыта те же, что и на рис. 1.

мембран ф.с.р. для Ca²⁺. Подтверждением этому служит также активация Ca²⁺-зависимой ATФазы по мере увеличения времени инкубации ф.с.р.

с аскорбиновой кислотой и FeSO₄ (рис. 2, 5).

Таким образом, развитие процесса свободнорадикального окисления липидов в мембранах ф.с.р. имеет своим следствием появление значительной проницаемости мембран везикул для нонов Ca²⁺. В самом деле, если обычно проницаемость мембран для ионов Ca²⁺ составляет 30—100 пмол/см² в 1 мин. (¹⁵), исходя из величины площади поверхности везикул, равной 2000—3000 см² на 1 мг белка (⁶), то скорость выхода Ca²⁺ из ф.с.р. в результате перекисного окисления липидов становится, по крайней мере, не менее 750—1500 пмол/см² в 1 мин., т. е. не менее скорости поступления Ca²⁺ внутрь везикул при непрерывной работе кальциевого насоса (рис. 1, табл. 2). Количественный анализ продуктов свободнорадикального окисления липидов (табл. 1, 2) показывает, что к этому моменту образуется 20—30·10⁻⁹ мол. гидроперекисей на 1 мг фосфолипидов, что составляет лишь незначительную часть (около 2,5%) от общего количества фосфолипидов, образующих мембраны ф.с.р.

Рассмотрим ряд возможных причин увеличения пассивной проницае-мости мембран ф.с.р. Образование заполненных водой каналов в мембране вследствие появления в ее гидрофобном липидном слое полярных гидроперекисных группировок маловероятно, поскольку, исходя из величины скорости диффузии для Ca^{2+} в воде, равной $4.2 \cdot 10^{-4}$ мол/(см² мин) (15),

Таблица 2 Действие ингибиторов свободнорадикальных реакций на транспорт Ca²⁺ в ф.с.р. при инкубации с аскорбиновой кислотой и ионами железа в течение 25 мин.

Добавки	Скорость гидролиза АТФ, имол. Р (в 1 мин. на 1 мг белия	Скорость поглоще- ния Са ²⁺ , нмол. Са ²⁺ в 1 мин. на 1 мг белка	Содержание гидро- перекисей в лици- дах ф.с.р., нмол. на 1 мг липидов	Оптическая плот- ность рествора липидов при $\lambda_{\rm 7DAX} = 234$ ми, мг лип. на 1 мл
Аскорбиновая кислота $(2\cdot 10^{-4}\ M)$ Аскорбиновая кислота $(2\cdot 10^{-4}\ M)$ + FeSO ₄ $(3\cdot 10^{-6}\ M)$ Аскорбиновая кислота $(2\cdot 10^{-4}\ M)$ + FeSO ₄ $(3\cdot 10^{-6}\ M)$ + $+$ 4-метил-2,6-дитретбутилфенол $(10^{-4}\ M)$ Аскорбиновая кислота $(2\cdot 10^{-4}\ M)$ + FeSO ₄ $(3\cdot 10^{-6}\ M)$ + $+$ α -токоферол $(10^{-5}\ M)$	2810	3340 3330 975 3150 3550	1,0 1,4 30,3 2,0 1,8	0,40 0,29 2,08 0,55

Рис. 3. Изменения величины Са/АТФ в результате преинкубации ф.с.р. в течение 2 мин. с гидроперекисью линоленовой кислоты (1) или с линоленовой кислотой (2). Гидроперекись кислоты и кислоту добавляли в пробу в виде раствора в метаноле (20 µл). Содержание гидроперекиси в препарате гидроперекиси линоленовой кислоты 0,46 µ мол/мг

скорость потока Ca^{2+} через подвергшиеся переокислению участки мембраны должна быть, по крайней мере, на четыре порядка больше. В этой связи интересно, что экзогенно вводимая в суспензию ф.с.р. гидроперекись линоленовой кислоты в количествах ($10-12~\mu r$), эквивалентных образующимся при индукции липопереокисления в наших условиях, не приводит к сколько-нибудь заметному увеличению пассивной проницаемости для Ca^{2+} по сравнению с действием неокисленной линоленовой кислоты (рис. 3).

Нельзя исключить, что увеличение пассивной проницаемости мембран везикул для Ca²⁺ обусловлено появлением липорастворимых продуктов окислительной деградации фосфолипидов, способных выполнять функцию подвижных переносчиков ионов Ca²⁺. Следует, однако, указать, что включение продуктов перекисного окисления жирных кислот в искусственные бимолекулярные мембраны не вызывает в них появления проводимости по Са²⁺ (1). Более того, отсутствие взаимосвязи между переокисленностью фосфолипидов липосом и проницаемостью их для ионов $\binom{16}{1}$, а также крайне низкая проницаемость липосом для ионов Ca²⁺ (15) свидетельствует о существенном вкладе белков в регуляцию проницаемости мембран ф.с.р. для Ca²⁺, из чего можно сделать заключение об отсутствии сплошного бислоя липидов в мембранах ф.с.р. Вероятно, увеличение пассивной проницаемости мембран ф.с.р. для Ca2+, индуцированное свободнорадикальным окислением липидов в них, может явиться результатом изменения во взаимодействиях гидрофобных участков белковых молекул мембран с их липидным окружением при появлении полярных продуктов автоокисления липидов.

Авторы выражают благодарность М. Н. Мерзляку за любезно предоставленный препарат α-токоферола.

Московский государственный университет им. М. В. Ломоносова

Поступило 21 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. А. Владимиров, А. И. Арчаков, Перекисное окисление липидов в биологических мембранах, «Наука», 1972. ² Ю. П. Козлов, В. С. Данилов и др., Свободнорадикальное окисление липидов в биологических мембранах, М., 1972. ³ В. В. Блоха, В. Е. Каган и др., Биофизика, 17, 549 (1972). ⁴ В. Е. Каган, А. А. Шведова и др., 210, 232 (1973). ⁵ W. Hasselbach, Progr. Biophys. Mol. Biol., 14, 167 (1964). ⁶ W. Hasselbach, In: Biochemistry of Intracellular Structures, Warszawa, 1969, р. 145. — A. Martonosi, J. Biol. Chem., 243, 71 (1968). ⁸ J. Folch, M. Lees, G. H. Sloane Stanley, J. Biol. Chem., 226, 497 (1957). ⁹ В. О. Christopherson, Biochim. et biophys. acta, 176, 463 (1969). ¹⁰ В. Б. Ритов, Виохимия, 36, 393 (1971). ¹¹ А. S. Fairhurst, D. Y. Jenden, Anal. Biochem., 16, 294 (1969). ¹² J. L. Bolland, H. P. Koch, J. Chem. Soc., 7—12, 445 (1945). ¹³ В. С. Данилов, В. Е. Каган и др., Изв. АН СССР, сер. биол., 4, 574 (1972). ¹⁴ В. Б. Ритов, Исследование биохимических механизмов мембранно-миофибриллярной связи, Автореф. кандидатской диссертации, МГУ, 1972, стр. 5. ¹⁵ J. М. Vanderkooi, А. Маrtonosi, Arch. Biochem. and Biophys., 147, 632 (1971). ¹⁶ М. Е. Leibowitz, M. C. Johnson, J. Lip. Res., 12, 662 (1971).