УДК 517.522.3

MATEMATUKA

3. А. ЧАНТУРИЯ

МОДУЛЬ ИЗМЕНЕНИЯ ФУНКЦИИ И ЕГО ПРИМЕНЕНИЯ В ТЕОРИИ РЯДОВ ФУРЬЕ

(Представлено академиком И. Н. Векуа 21 V 1973)

1. Понятие вариации функции было впервые введено К. Жорданом. Н. Винер обобщил понятие вариации и ввел функции ограниченной p-вариации. Наконец, Л. Юнг (4) ввела понятие функции ограниченной Φ -вариации.

Пусть $\Phi(u)$ — строго возрастающая непрерывная функция при $u \ge 0$,

 $\Phi(0) = 0$.

Говорят, что периодическая с периодом 2π функция имеет ограниченную Φ -вариацию или $\equiv V_{\Phi}$, если

$$V_{\Phi}(f) = \sup_{-\infty < a < \infty} \sup_{\Pi_{a}} \sum_{k=1}^{m} \Phi\left(\left|f(x_{i}) - f(x_{i-1})\right|\right) < \infty,$$

где $\Pi_a = \{a = x_0 < x_1 < \ldots < x_m = a + 2\pi\}$ — произвольное разбиение периода. При $\Phi(u) = u$ получается класс V Жордана, при $\Phi(u) = u^p$, $1 , — классы Винера (3). Отметим, что функции класса <math>V_{\Phi}$ могут иметь лишь разрывы первого рода (4) и справедливы строгие вложения

$$\operatorname{Lip} \frac{1}{p} \subset V_p \subset V_q, \quad p < q.$$

Введем теперь понятие модуля изменения функции. Всюду в дальнейшем предполагается, что все рассматриваемые функции удовлетворяют следующим требованиям:

1) f(t) периодична с периодом 2π и ограничена всюду на периоде;

2) в любой точке t разрыва первого рода

$$\min \{f(t-0), f(t+0)\} \le f(t) \le \max \{f(t-0), f(t+0)\};$$

3) функция f(t) достигает своей верхней или нижней грани на периоде. Определение. Модулем изменения функции f(t) называется функция натурального аргумента v(n, f), определенная следующим образом:

$$v(n,f) \sup_{\Pi} \sum_{h=0}^{h-1} |f(x_{2h+1}) - f(x_{2h})|, \qquad (1)$$

где Π — произвольное разбиение интервала $(0, 2\pi)$ на n непересекающихся интервалов $(x_{2h}, x_{2h+1}), k=0,1,\ldots,n-1$, т. е.

$$0 < x_0 < x_1 \le x_2 < x_3 \le \ldots \le x_{2n-2} < x_{2n-1} < 2\pi.$$

Очевидны следующие свойства модуля изменения функции:

1) $v(n, f) \leq v(n+1, f)$,

2) $v(n, f) \leq v(m, f) + v(n-m, f), \quad 0 \leq m \leq n.$

Мы теперь укажем необходимое и достаточное условие того, чтобы данная функция натурального аргумента была модулем изменения.

T е о p е m а 1. Для того чтобы функция натурального аргумента была модулем изменения некоторой функции f(t), необходимо и достаточно. чтобы она была неубывающей и выпуклой вверх функцией.

Впредь такие функции будем называть модулями изменения. Пусть

дан модуль изменения $\upsilon(n)$.

Класс функций, для каждой из которых v(n, f) = O(v(n)), будем обозначать через V[v(n)] = V[v].

Имеет место

Теорема 2. Для того чтобы $V[v_1] = V[v_2]$, необходимо и достаточно, чтобы $v_1(n) \sim v_2(n)$ *. Если $v_1(n) = o(v_2(n))$, то справедливо строгое включение

 $V[v_1] \subset V[v_2].$

T е о р е м а $\ 3.$ E сли $\ \Phi$ (u) выпукла u $\ \Phi$ (u) \sim u, то справедливо строгое включение

 $V_{\Phi} \subset V[n\Phi^{-1}(1/n)].$

Следствие 1. Класс Жордана V=V[1].

Следствие 2. Класс Винера $V_p \subset V[n^{i-1/p}], 1 .$

Для оценки модуля изменения непрерывной функции полезна следующая

T е орема 4. Если f(t) непрерывна на $[0,2\pi]$ с модулем непрерывно-

 $c\tau u \omega(\delta)$, τo

 $v(n, f) = O(n\omega(1/n)).$

В терминах модуля изменения возможно указать критерий того, чтобы функция имела только разрывы первого рода.

T е о р е м а 5. Для того чтобы f(t) имела только разрывы первого рода, необходимо и достаточно, чтобы

$$v(n, f) = o(n).$$

Из этой теоремы следуют теорема Жордана, теорема Винера (3) и теорема Л. Юнг (4) о том, что функции соответственно классов $V,\ V_p$ и V_Φ имеют только разрывы первого рода.

2. Хорошо известно, что если модуль непрерывности функции удовлетворяет условию Дини — Липшица, то ряд Фурье функции сходится рав-

номерно ((1), стр. 280).

С другой стороны, классический результат Жордана гласит: если f(t) непрерывна и имеет ограниченную вариацию, то ряд Фурье сходится равномерно. Затем Л. Юнг (5) обобщила эту теорему Жордана на классы Винера и более широкие классы $V_{\exp(-u^{-\alpha})}$, $0 < \alpha <^1/2$; этот результат обобщил Салем (6) следующим образом. Пусть $\Phi(u)$ и $\Psi(u)$ — выпуклые на $[0, \infty)$ взаимно дополнительные в смысле У. Юнга функции ((1), стр. 32). Результат Салема состоит в том, что ряд Фурье сходится равномерно на всей оси, єсли $f = C \cap V_{\Phi}$ и

$$\sum_{n=1}^{\infty} \Psi\left(1/n\right) < \infty. \tag{2}$$

К. И. Осколков (7) показал, что (2) эквивалентно условию

$$\int_{+0}^{\infty} \ln \frac{1}{\Phi(u)} du < \infty.$$

А. Баерштейн (8) и независимо К. И. Осколков (7) показали, что условие (2) является необходимым для равномерной сходимости всех рядов Фурье класса $C \cap V_{\Phi}$ в совокупности (см. также (8)).

^{*} Т. е. существуют две положительные константы A и B такие, что $Av_1(n) \le \le v_2(n) \le Bv_1(n)$.

Теперь мы в терминах модуля изменения функции сформулируем теорему, из которой следуют все предыдущие результаты, а также некоторые новые.

Теорема 6. Пусть $\omega(\delta, f)$ — модуль непрерывности и $\upsilon(n, f)$ — модуль изменения функции f(t). Если существует функция $\varphi(n) \to 0$ такая,

$$\sum_{k=[\exp(\varphi(n)\omega^{-1}(1/n))]}^{n} \frac{\upsilon(k,f)}{k^2} \to 0, \quad n \to \infty,$$

 ${\it ro}$ ряд Фурье функции f(t) сходится равномерно.

Следствие 1. Если $\sum_{k=1}^{\infty} \frac{v(k,f)}{k^2} < \infty$ и f(t) непрерывна, то ряд Фурье

сходится равномерно.

Из этого получается, если $f \in C \cap V_{\Phi}$, где $\Phi(u)$ выпукла, и

$$\sum_{k=1}^{\infty} \frac{1}{k} \Phi^{-1} \left(\frac{1}{k} \right) < \infty, \tag{3}$$

то ряд Фурье сходится равномерно.

Можно показать, что сходимость (3) эквивалентна сходимости ряда (2). Следствие 2. Если $v(k, f) = O(k(\ln k)^{-1}(\ln \ln k)^{-\alpha}), 0 < \alpha \le 1, u$

$$ω(\delta, f) = O\left(\frac{1}{\ln(1/\delta)}\right) \cdot \exp(o(\ln\ln(1/\delta))^a),$$
 το ρяθ Φυρьε функции $f(t)$

сходится равномерно.

С ледствие 3. Если $v(k, f) = O(k(\ln k)^{-1}(\ln \ln k)^{-1}(\ln \ln \ln k)^{-\alpha}),$ $0 < \alpha \le 1$, $u \omega(\delta, f) = (\ln (1/\delta))^{-\exp(o((\ln \ln \ln (1/\delta))\alpha))}$, то ряд Фурье функции f(t) сходится равномерно.

3. В этом параграфе речь идет об абсолютной сходимости ряда Фурье. Известные теоремы С. Н. Бернштейна и А. Зигмунда гласят ((1), стр. 608—649).

Теорема Бернштейна. Если модуль непрерывности функции f(t)

удовлетворяет условию $\sum\limits_{n=1}^{\infty}\omega\left(1/n\right)/n^{1/2}<\infty$, то

$$\sum_{n=1}^{\infty} |a_n(f)| + |b_n(f)| < \infty,$$
 (4)

где $a_n(f)$ и $b_n(f)$ — коэффициенты Фурье функции f(t). Теорема Зигмунда. Если f(t) = V и модуль непрерывности $\omega(\delta, f)$ удовлетворяет условию

$$\sum \frac{\left(\omega\left(1/n,f\right)\right)^{l_2}}{n} < \infty,$$

то ряд (4) сходится.

Сформулируем теперь теорему, из которой теоремы Бернштейна и Зиг-

мунда получаются как предельные случаи.

Пусть $\upsilon(n,f)$ — модуль изменения, а $\omega(\delta,f)$ — модуль непрерывности функции f(t); далее обозначим $\varphi(m) = \sup (n; \upsilon\{n,f\}/n \geqslant 1/m\}$ и пусть

$$\tau(n) = \log_2 \frac{n\omega(1/n, f)}{\upsilon(n, f)}$$

Tеорема 7. Пусть модуль изменения функции f(t) удовлетворяет условию

$$\sum_{n=1}^{\infty} \frac{\upsilon(n,f)}{n^{3/2}} < \infty;$$

тогда если

$$\sum_{n=1}^{\infty} \frac{1}{n} \omega \left(\frac{1}{n}\right) \left\{ \sum_{m=0}^{\tau(n)} \frac{1}{4^m} \varphi \left(\left[\frac{2^m}{\omega (1/n)} \right] \right) \right\}^{1/2} < \infty,$$

то ряд (4) сходится.

Eсли же последовательность v(n) удовлетворяет условию

$$\sum_{n=1}^{\infty} \frac{v(n)}{n^{s/2}} = \infty,$$

то существует функция f(t) такая, что v(n, f) = O(vn) и $\omega(1/n, f) = O(v(n)/n)$, а ряд (4) расходится.

Спедствие 1. Если v(n, f) = O(1), то получается теорема Зигмунда. Спедствие 2. Если применить теорему 4, то получается теорема Бернштейна.

Следствие 3. Если $v(n, f) = O(n^{\alpha}), 0 < \alpha <^{4}/_{2}, u$

$$\sum_{n=1}^{\infty} \frac{1}{n} \left[\omega \left(\frac{1}{n} \right) \right]^{\frac{1}{2}(1-2\alpha)/(1-\alpha)} < \infty,$$

то ряд (4) сходится.

Например, можно взять $\omega(\delta) = \delta^{l_a} \cdot 2^{(\lg_2(1/\delta))^2}$, $\epsilon > 0$. Следствие 4. $Ecau \ \upsilon(n, j) = O(n^{l_a} \ln^{-\beta} n)$, $\beta > ^3/_2$, u

$$\sum \frac{1}{n} \ln^{n-\beta} \left(\frac{1}{\omega(1/n)} \right) < \infty,$$

то ряд (4) сходится.

Например, можно взять $\omega(\delta) = O(\exp(-(\ln(1/\delta))^{2/(2\beta-1)+\epsilon}))$, $\epsilon > 0$, или $\omega(\delta) = \delta^{\alpha}$, где $\alpha > 0$.

Следствие 5. Если $v(n, f) = O(n^{\frac{1}{3}} \ln^{-\beta} n), 1 < \beta \leq \frac{3}{2}, u$

$$\sum_{n=1}^{\infty} \frac{[n+2 \lg_2 \omega (1/2^n)]^{1/n}}{n^p} < \infty,$$

Например, можно взять $\omega(\delta) = \delta^{\eta_{*}} \cdot 2^{(\lg^{2}(1/\delta))^{2} p^{-2} - \epsilon}$ ε>0. то ряд (4) сходится.

Институт прикладной математики Тбилисского государственного университета Поступило 25 IV 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. К. Бари, Тригонометрические ряды, М., 1961. ² А. Зигмунд, Тригонометрические ряды, 1, М., 1965. ³ N. Wiener, Massach. J. Math., 3, 72 (1924). ⁴ L. Young, Acta Math., 67 (1936). ⁵ L. Young, Math. Ann., 155, 4 (1938). ⁶ R. Salem, Actual Sci. Industr., 862, 46 (1940). ⁷ К. И. Осколков, Матем. заметки, 12, 3 (1972). ⁸ А. Ваегп stein, II, Studia Math., 42, 3 (1972). ⁹ Б. И. Голубов, Матем. сборн., 89, 4 (1972).