УДК 517.946

MATEMATHKA

в. н. гольдберг

О РАЗРЫВНЫХ РЕШЕНИЯХ НЕЛИНЕЙНЫХ СМЕШАННЫХ ЗАДАЧ ДЛЯ ПОЧТИ ЛИНЕЙНЫХ ГИПЕРБОЛИЧЕСКИХ СИСТЕМ НА ПЛОСКОСТИ

(Представлено академиком С. Л. Соболевым 16 V 1973)

1°. В области $\overline{G}_T^{\bullet} = \{0 \leqslant x \leqslant 1 - v_i t, 0 \leqslant t \leqslant \mathring{T} \leqslant v_i^{-1}\}$ рассмотрим задачу

$$p_t + \lambda p_x = P(x, t, p, q), \tag{1}$$

$$q_t - vq_x = Q(x, t, p, q), \qquad (2)$$

$$p(x, 0) = p_0(x), q(x, 0) = q_0(x),$$
(3)

$$\mu[B_1p_x + B_2p_t + B_3q_t + B_4q_x]|_{x=0} + A(t, p, q)|_{x=0} = 0, \tag{4}$$

тде p, P, A и q, Q соответственно n- и m-мерные векторы, n > 1 (случай n = 1 см. в (¹)), λ , ν — постоянные диагональные положительные матрицы *, ν_1 — наибольшее собственное значение матрицы ν , B_i — постоянные матрицы соответствующих размеров, удовлетворяющие условию $|B_2 - B_1 \lambda^{-1}| \neq 0$, $\mu \geq 0$ — малый числовой параметр. Предполагается, что $p_0 \in C_1[0, 1], q_0, P, Q \in C_2(\bar{G}_T^n \times R^{n+m})$, вектор-функция A аналитическая в области $[0, T] \times R^{n+m}, |A_p(0, p_0(0), q_0(0))| \neq 0$ и выполняются условия согласования, необходимые для существования в \bar{G}_T^n решения задачи (1) — (4) при $\mu = 0$ класса $C_1(\bar{G}_T^n)$. В (1) — (4) все величины вещественные. Условимся называть (1) — (4) задачей $\mu \geq 0$.

В настоящей заметке вводится определение разрывного решения (р.р.) задачи μ =0, возникающего при соответствующих условиях из C_1 -решения задачи μ =0 при продолжении C_1 -решения по t, устанавливаются теоремы существования и единственности р.р., а также теоремы об однозначной разрешимости и сходимости при μ →0 гладкого решения задачи μ >0 к р.р. Отметим, что описанные результаты можно интерпретировать как некоторый аналог известных результатов А. Н. Тихонова, Л. С. Понтрягина и Е. Ф. Мищенко (см., например, ($^{2-5}$)) по системам обыкновенных дифференциальных уравнений с малым параметром при производных.

Проведенное рассмотрение задач µ≥0 представляет интерес для некоторых прикладных задач математической физики (см., например, (⁶⁻⁸)), где исследовались колебания тока и напряжения в ограниченной телеграфной линии с нелинейным граничным условием вида (4).

2°. Введем обозначения. Пусть

$$\lambda = \operatorname{diag}[\lambda_1, \dots, \lambda_1; \lambda_2, \dots, \lambda_2; \dots; \lambda_r, \dots, \lambda_r],$$
 $n = \sum_{s=1}^r k_s, \quad \lambda_1 > \lambda_2 > \dots > \lambda_r > 0.$

^{*} Случай, когда матрица diag $[\lambda, \nu]$ имеет собственные значения, равные нулю, исключается из рассмотрения ради простоты формулировок.

По произвольному вектору $p = \{p^1, p^2, \dots, p^n\} \in \mathbb{R}^n$ для $1 \le i \le r$ определив векторы $p_i = \{p^{e_t+1}, p^{e_t+2}, \dots, p^{e_t+k_t}\} \in \mathbb{R}^{k_t}$ и величины $|p_i| = \sum_{\alpha=1}^{k_t} |p^{e_t+\alpha}|$, где $e_i = \sum_{\alpha=1}^{k_t} |p^{e_t+\alpha}|$

 $=0,\ e_i=\sum\limits_{}^{t-1}k_s.$ Тогда вектор-функцию $P(x,\ t,\ p,\ q)$ можно записать в виде

$$P(x, t, p, q) = \{P_1(x, t, p_1, p_{j\neq 1}, q), P_2(x, t, p_2, p_{j\neq 2}, q), \dots \\ \dots, P_r(x, t, p_r, p_{j\neq r}, q)\}.$$

Для $0 \le \tau < T \le \mathring{T}$, $1 \le k \le r$ положим

$$\overline{G}_T = \{(x, t) \in \overline{G}_T, t \leq T\}, \quad G_T = \{(x, t) \in \overline{G}_T, t < T\},$$

$$\overline{G}_T[k_\tau] = \{(x, t) \in \overline{G}_T, \tau \leq t \leq T, 0 \leq x \leq \min[\lambda_k(t - \tau), 1 - \nu_1 t]\},$$

$$\overline{D}_T[k_\tau] = \overline{G}_T \setminus \overline{G}_T[k_\tau], \quad \overline{D}_T(k_\tau) = \{(x, t) \in \overline{D}_T[k_\tau], x \neq \lambda_k(t - \tau)\}.$$

 3° . Рассмотрим задачу μ =0. Имеет место ($^{\circ}$, 10)

Теорема 1. Справедлива следующая альтернатива: либо

A) в G_T^* существует единственное решение $\{\stackrel{\circ}{p},\stackrel{\circ}{q}\}$ $\in C_1(G_T^\circ)$ задачи $\mu=$ $u |A_p(t, p(0, t), q(0, t))| \neq 0$ при $0 \leq t \leq T$; либо

Б) найдется такое $0 < T \le T$, что в G_{T} существует единственное реше ние $\{p, q\} \in G_1(G_{r})$ задачи $\mu=0, |A_p(t, p(0, t), q(0, t))| \neq 0$ при $0 \leq t < T$ и выполняется по крайней мере одно из следующих равенств:

$$s = \sum_{i=1}^{n} \sup_{G_{T^*}} |\mathring{p}^i| + \sum_{j=1}^{m} \sup_{G_{T^*}} |\mathring{q}^j| = \infty, \quad d = \inf_{0 \le t \le T^*} |A_p(t, \mathring{p}(0, t), \mathring{q}(0, t))| = 0.$$

Соответствующие примеры показывают, что реализуются все логиче

ские возможности, содержащиеся в утверждении $\hat{\mathbf{E}}$).

Утверждение A) и равенство $s=\infty$ в утверждении B) теоремы 1 озна чают, что классическое решение задачи μ =0 продолжено по t до границ области определения вектор-функций Р, Q, А. Теорема 1 оставляет откры тым вопрос о продолжаемости решения задачи $\mu = 0$, если имеет мест утверждение Б), но $T^* < T$, $s < \infty$ и, следовательно, d = 0. В то же врем примеры, иллюстрирующие эту ситуацию, показывают, что если

$$J = \int_{0}^{T^{\bullet}} |\det A_{p}(\tau, p(0, \tau), q(0, \tau))|^{-1} d\tau < \infty,$$

то в G_T при $T > T^*$ и сколь угодно близком к T^* , вообще говоря, не сущес

вует даже непрерывных обобщенных решений задачи $\mu = 0$ *.

Ниже в предположении, что имеет место утверждение Б) теоремы $T^* < T$, $s < \infty$, $J < \infty$, проводится построение р.р. задачи $\mu = 0$ в \overline{G}_T при T > TОтметим, что в изучаемом случае справедлива

 Π е м м а 1. Вектор-функции $p \in C(\overline{G}_{T^*})$, $q \in C_1(\overline{G}_{T^*})$ и $|A_p(T^*, p^*, q^*)| =$

 $e\partial e \ p^* = p(0, T^*), q^* = q(0, T^*).$

Положим $H(t, p, q) = -(B_2 - B_1 \lambda^{-1})^{-1} A(t, p, q)$. В силу леммы 1 есть состояние равновесия системы

$$dp/d\tau = H(T^*, p(\tau), q^*)$$

и матрица $H_p(T^*, p^*, q^*)$ имеет собственное значение, равное нулю. След (3), предположим, что кратность этого собственного значения равна ед

^{*} Напротив, если $J=\infty$, то при $t>T^*$ решение $\{p,\ q\}$, вообще говоря, продолжае: неоднозначно в классе непрерывных обобщенных решений задачи $\mu=0$ (9).

По произвольному вектору $p = \{p^1, p^2, \dots, p^n\} \in \mathbb{R}^n$ для $1 \le i \le r$ определим векторы $p_i = \{p^{e_t+1}, p^{e_t+2}, \dots, p^{e_t+k_t}\} \in R^{k_t}$ и величины $|p_i| = \sum_{i=1}^{k_t} |p^{e_t+\alpha}|$, где $e_1 = \sum_{i=1}^{k_t} |p^{e_t+\alpha}|$

 $=0,\ e_i=\sum\limits_{s=1}^{t-1}k_s.$ Тогда вектор-функцию $P(x,\ t,\ p,\ q)$ можно записать в виде $P(x, t, p, q) = \{P_1(x, t, p_1, p_{j \neq 1}, q), P_2(x, t, p_2, p_{j \neq 2}, q), \dots \}$ $\ldots, P_r(x, t, p_r, p_{j \neq r}, q) \}.$

Для $0 \le \tau < T \le T$, $1 \le k \le r$ положим

$$\overline{G}_T = \{(x, t) \in \overline{G}_T, t \leq T\}, \quad G_T = \{(x, t) \in \overline{G}_T, t < T\},$$

$$\overline{G}_T[k_\tau] = \{(x, t) \in \overline{G}_T, \tau \leq t \leq T, 0 \leq x \leq \min[\lambda_k(t - \tau), 1 - \nu_1 t]\},$$

$$\overline{D}_T[k_\tau] = \overline{G}_T \setminus \overline{G}_T[k_\tau], \quad \overline{D}_T(k_\tau) = \{(x, t) \in \overline{D}_T[k_\tau], x \neq \lambda_k(t - \tau)\}.$$

 3° . Рассмотрим задачу μ =0. Имеет место (9 , 10)

Теорема 1. Справедлива следующая альтернатива: либо

A) в \overline{G}_{r}^{s} существует единственное решение $\{\stackrel{\circ}{p},\stackrel{\circ}{q}\}$ \in $C_{\mathfrak{q}}(\overline{G}_{r})$ задачи μ =0 $u |A_p(t, p(0, t), q(0, t))| \neq 0$ при $0 \leq t \leq \mathring{T}$; либо

Б) найдется такое $0 < T^* \le T$, что в G_T существует единственное решение $\{p, q\} \in G_1(G_T)$ задачи $\mu=0$, $|A_p(t, p(0, t), q(0, t))| \neq 0$ при $0 \leq t < T^*$, и выполняется по крайней мере одно из следующих равенств:

$$s = \sum_{i=1}^{n} \sup_{G_{T^*}} |\mathring{p}^i| + \sum_{j=1}^{m} \sup_{G_{T^*}} |\mathring{q}^j| = \infty, \quad d = \inf_{0 \le t < T^*} |A_p(t, \mathring{p}(0, t), \mathring{q}(0, t))| = 0.$$

Соответствующие примеры показывают, что реализуются все логиче-

ские возможности, содержащиеся в утверждении Б).

Утверждение A) и равенство $s=\infty$ в утверждении Б) теоремы 1 означают, что классическое решение задачи $\mu=0$ продолжено по t до границы области определения вектор-функций Р, Q, А. Теорема 1 оставляет открытым вопрос о продолжаемости решения задачи µ=0, если имеет место утверждение Б), но $T^* < T$, $s < \infty$ и, следовательно, d = 0. В то же время примеры, иллюстрирующие эту ситуацию, показывают, что если

$$J = \int_{0}^{T^{*}} |\det A_{p}(\tau, p(0, \tau), q(0, \tau))|^{-1} d\tau < \infty,$$

то в \overline{G}_T при $T > T^*$ и сколь угодно близком к T^* , вообще говоря, не сущест-

вует даже непрерывных обобщенных решений задачи $\mu = 0$ *.

Ниже в предположении, что имеет место утверждение Б) теоремы 1, $T^* < \overline{T}$, $s < \infty$, $J < \infty$, проводится построение р.р. задачи $\mu = 0$ в \overline{G}_T при $T > T^*$. Отметим, что в изучаемом случае справедлива

 Π емма 1. Bектор-функции p $\in C(\overline{G}_{T^*})$, q $\in C_1(\overline{G}_{T^*})$ и $|A_p(T^*, p^*, q^*)| = 0$, $e\partial e \ p^* = p(0, T^*), \ q^* = q(0, T^*).$

Положим $H(t, p, q) = -(B_2 - B_1 \lambda^{-1})^{-1} A(t, p, q)$. В силу леммы 1 есть состояние равновесия системы

$$dp/d\tau = H(T^*, p(\tau), q^*) \tag{5}$$

и матрица $H_p(T^*, p^*, q^*)$ имеет собственное значение, равное нулю. Следуя (3), предположим, что кратность этого собственного значения равна еди-

^{*} Напротив, если $J=\infty$, то при $t>T^*$ решение $\{\stackrel{\circ}{p},\stackrel{\circ}{q}\}$, вообще говоря, продолжаемо неоднозначно в классе непрерывных обобщенных решений задачи $\mu=0$ (°).

нице, а действительные части всех остальных собственных значений матрицы $H_p(T^*, p^*, q^*)$ отрицательны. Тогда существует такая матрица L, $|L| \neq 0$, что преобразование $p-p^*=L$ приводит систему (5) к виду

$$\frac{d\xi^{i}}{d\tau} = \alpha(\xi^{i})^{2} + \Phi^{i}(\xi), \quad \frac{d\xi^{i}}{d\tau} = \sum_{s=2}^{n} a_{s}^{i} \xi^{s} + \Phi^{i}(\xi), \quad 2 \leq i \leq n, \tag{6}$$

где α — постоянная, функции Φ^s таковы, что $\Phi^s(0) = \partial \Phi^s(0)/\partial \xi^h = 0$, $1 \le s$, $k \le n$, $\partial^2 \Phi^1(0) / \partial (\xi^1)^2 = 0$, а действительные части всех собственных значений матрицы $\|a_s^i\|$ отрицательны (³). Пусть $\alpha \ne 0$. Тогда существует единственная траектория $p = \hat{p}(\tau)$ системы (5), стремящаяся при $\tau \to -\infty$ к состоянию равновесия $p = p^*$ (³, ¹¹). Предположим далее, что траектория $p = \hat{p}(\tau)$ при $\tau \to \infty$ стремится к асимптотически устойчивому состоянию

равновесия $p = \bar{p}, \sum_{i=1}^{n} |\bar{p}^{i}| < \infty$, системы (5).

Обозначим через \Re_T , $T^* < T \le \mathring{T}$, множество определенных в \overline{G}_T векторфункций $\{p, q\}$ таких, что $\{p, q\} = \{\mathring{p}, \mathring{q}\}$ в \overline{G}_{T^*} , $p(0, T^* + 0) = \overline{p}$, $q \in C_1(\overline{G}_T)$, $p_i \in C_1(\overline{G}_T[i_{T^*}])$, $p_i \in C_1(\overline{D}_T[i_{T^*}])$, $1 \le i \le r$.

Отметим, что вектор-функция p_i может быть двухзначной на характе-

ристике $x = \lambda_i(t - T^*)$.

Определение 1. Вектор-функция $\{p,\ q\}$ $\in \Re_T$, $T^* < T \leqslant \mathring{T}$, называется р.р. решением задачи $\mu = 0$ в \overline{G}_T , если

- 1) H(t, p(0, t), q(0, t)) = 0 при $T \le t \le T$ и действительные части всех собственных значений матрицы $H_p(t, p(0, t), q(0, t))$ отрицательны;
- 2) при любых $(x, t) \in \overline{G}_T$, $x \neq \lambda_i(t-T^*)$, $1 \leq i \leq r$, вектор-функция $\{p, q\}$ удовлетворяет уравнениям (1), (2).

Теорема 2. Имеет место следующая альтернатива: либо

- A) в $\overline{G}_{T}^{\bullet}$ существует единственное р.р. задачи μ =0; либо
- В) найдется такое $T^* < \theta^* \le T$, что при любом $\varepsilon > 0$ в $\overline{G}_{\theta^*-\varepsilon}$ существует единственное p.p. $\{p, q\}$ задачи $\mu = 0$ и имеет место по крайней мере одно из следующих соотношений:

$$\begin{split} \sum_{i=1}^{r} \big[\max_{\overline{G}_{\theta^{\star}-\varepsilon}[i_{T^{\star}}]} |\overset{1}{p}_{i}| + \max_{\overline{D}_{\theta^{\star}-\varepsilon}[i_{T^{\star}}]} |\overset{1}{p}_{i}| \big] + \sum_{j=1}^{m} \max_{\overline{G}_{\theta^{\star}-\varepsilon}} |\overset{1}{q}_{i}| \to \infty \quad npu \quad \varepsilon \to 0, \\ \inf_{T^{\star} \leqslant t < \theta^{\star}} |\det H_{p}(t, \overset{1}{p}(0, t), \overset{1}{q}(0, t))| = 0. \end{split}$$

4°. Перейдем к исследованию задачи μ>0.

Определение 2. Вектор-функция $\{p, q\} \in C(\overline{G}_T)$, $0 < T \le T$, $p_i \in C_1(\overline{G}_T[i_0])$, $p_i \in C_1(\overline{D}_T[i_0])$, $1 \le i \le r$, $q \in C_1(\overline{G}_T)$, удовлетворяющая (1) - (4) в \overline{G}_T , называется решением задачи $\mu > 0$ в \overline{G}_T *.

При изучении задачи μ>0 используется

Условие (*). Каковы бы ни были $1 \le i \le r$ и $-\infty < \tau < \infty$ при $T^* \le t \le T$, существует решение $p_i = p_i(t) \in C[T^*, T]$ уравнения

$$p_{i}(t) = \hat{p}_{i}(\tau) + \int_{\tau^{*}}^{t} P_{i}(\xi, \eta, p_{i}(\eta), p_{j \neq i}(\xi, \eta), q(\xi, \eta)) |_{\xi = \lambda_{i}(\eta - \tau^{*})} d\eta.$$
 (7)

^{*} Определение 2 вводится в связи с тем, что при $\mu>0$, вообще говоря, не выполняется условие согласования, необходимое для существования в $\overline{G}_{\hat{T}}$ решения задачи $\mu>0$ класса $C_1(\overline{G}_{\hat{T}})$.

Теорема 3. Пусть:

1) $npu 0 \le t < C^*$ действительные части всех собственных значений матрицы $H_p(t, p(0, t), q(0, t))$ отрицательны;

2) имеет место утверждение А) теоремы 2;

3) выполняется условие (*).

Tогда найдется такое $0 < \mu_0 < \infty$, что:

1) при любом $0 < \mu < \mu_0$ в G_T существует единственное решение $\{p(\mu, x, t), q(\mu, x, t)\}$ задачи $\mu > 0$ и

$$\sum_{i=1}^{n} \max_{\overline{G}_{\widehat{T}}} |p^{i}(\mu, x, t)| + \sum_{j=1}^{m} \max_{\overline{G}_{\widehat{T}}} |q^{j}(\mu, x, t)| < C < \infty,$$

где C — постоянная, не зависящая от μ ;

2) каковы бы ни были $1 \le i \le r$ и $\varepsilon > 0$, $p_i(\mu, x, t) \to p_i(x, t)$ при $\mu \to 0$ равномерно в $\overline{G}_{\tilde{T}}[i_{T^{\bullet}+\varepsilon}] \cup \overline{D}_{\tilde{T}}[i_{T^{\bullet}-\varepsilon}];$

3) $q(\mu, x, t) \rightarrow q(x, t)$ при $\mu \rightarrow 0$ равномерно в \overline{G}_{2} ;

4) какова бы ни была замкнутая область $D = \overline{G}_{\hat{T}}$, не имеющая общих точек ни с одной характеристикой $x = \lambda_i t$, $x = \lambda_i (t - T^*)$, $1 \le i \le r$, $p_i(\mu, x, t) \to p_i(x, t)$, $p_x(\mu, x, t) \to p_x(x, t)$, $q_t(\mu, x, t) \to q_t(x, t)$, $q_x(\mu, x, t) \to q_x(x, t)$ при $\mu \to 0$ равномерно в D.

Соответствующие примеры показывают, что если предположения 1) и 2) теоремы 3 выполняются, а условие (*) не выполняется, то при любом

сколь угодно малом $\mu > 0$ в $\bar{G}_{\hat{T}}$ не существует решения задачи $\mu > 0$.

Теорема 4. Условие (*) выполняется, если справедливы утверждения

1)—3) теоремы 3. Научно-исследовательский радиофизический институт

Горький

Поступило 10 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Н. Гольдберг, ДАН, 195, № 3, 532 (1970). ² А. Н. Тихонов, Матем. сборн., 31 (73), 3, 574 (1952). ³ Л. С. Понтрягин, Изв. АН СССР, сер. матем., 21, № 5, 605 (1957). ⁴ Е. Ф. Мищенко, Л. С. Понтрягин, Изв. АН СССР, сер. матем., 23, № 5, 643 (1959). ⁵ Е. Ф. Мищенко, Изв. АН СССР, сер. матем., 21, № 5, 627 (1957). ⁶ А. А. Витт, ЖТФ, 4, 264 (1937). ⁷ Л. Nagumo, М. Shimura, Proc. IRE, 49, № 8, 1281 (1961). ⁸ М. Shimura, IEEE Trans. СТ-14, № 1, 60 (1967). ⁹ В. Н. Гольдберг, ДАН, 202, № 3, 518 (1972). ¹⁰ В. Н. Гольдберг, Дифференциальные уравнения, 9, № 10 (1973). ¹¹ Р. М. Минц, ДАН, 147, № 1, 31 (1962).