Доклады Академии наук СССР 1974. Tom. 214. № 1

УДК 513.83

MATEMATUKA

А. П. ШОСТАК

ШЕЙПОВАЯ ЭКВИВАЛЕНТНОСТЬ В КЛАССАХ КОМПАКТНОСТИ

(Представлено академиком П. С. Александровым 4 V 1973)

Понятие шейпа (или фундаментального типа) метрического компакта, представляющее собой своего рода модификацию понятия гомотопического типа, было введено К. Борсуком в 1968 г. (1, 2). В 1971 г. С. Мардешич и Дж. Сегал с помощью так называемых ANR-спектров определили и изучили шейповскую эквивалентность для бикомпактов, которая в случае метрических пространств совпадает с шейповым отношением Борсука (3,4). Приблизительно в то же время Р. Фокс определяет отношение шейповой эквивалентности в произвольной категории и, исходя из этого определения, изучает шейповую эквивалентность в классе метрических пространств, которая в случае компактов также совпадает с шейновой эквивалентностью Борсука (5).

Пусть & — некоторый класс топологических пространств, представленный в виде объединения своих подклассов, т. е. $\mathfrak{E}=\cup \{\mathfrak{E}_{\alpha}: \alpha \in A\} \cup \mathfrak{E}_{0}$. Поставим каждому $\alpha = A$ в соответствие некоторый кардинал τ_{α} . Полученную систему классов пространств с зафиксированными мощностями обозначим \mathscr{E} , $\mathscr{E} = \{(\mathfrak{E}_{\alpha}, \tau_{\alpha})_{\alpha \in A}, \mathfrak{E}\}$. Пусть $\pi(\mathscr{E})$ — совокупность всевозможных произведений P пространств из $\mathfrak E$ таких, что пространства из $\mathfrak E_{\alpha}$ входят в Pв качестве сомножителей в числе, не превосходящем au_{lpha} . Пространство Xбудем называть \mathscr{E} -компактным и писать X- $\Re(\mathscr{E})$, если X гомеоморфно

замкнутому подпространству некоторого $P \in \pi(\mathscr{E})$.

Данная статья посвящена определению отношения шейповой эквивалентности в классах &-компактных пространств и изучению ее свойств. Связь между этой и ранее изучавшимися фундаментальными характеристиками установлена в теоремах 4-6.

1. Пусть 8 — некоторая система топологических пространств.

Определение 1. \mathscr{E} -спектром назовем обратный спектр $X=\{U_{\alpha},\,p_{\alpha\alpha'},\,A\}$, где все U_{α} принадлежат $ANE(\pi(\mathscr{E}))$.

Определение 2. Пусть X, $Y = \{V_{\beta}, q_{\beta\beta'}, B\} - \mathcal{E}$ -спектры. Фундаментальной направленностью из X в Y $(f: X \rightarrow Y)$ назовем такую систему $f = \{f, \{f_{\beta}\}_{\beta \in B}\}$, где $f \colon B \to A$ — возрастающая функция и для каждого β f_{β} : $U_{f(\beta)} \rightarrow V_{\beta}$ — непрерывное отображение, что $f_{\beta}p_{f(\beta)f(\rho')} \simeq q_{\beta\beta'}f_{\beta'}$ для произвольных $\beta < \beta'$. В дальнейшем наряду с записью $\{f, \{f_{\beta}\}_{\beta \in B}\}$ будем

применять сокращенную запись $\{f_{\beta}\}$.

Подобно (3), рассмотрим для каждого $\mathscr E$ категорию $\mathscr E_{\mathfrak g}$, объектами которой являются 8-спектры, а в качестве морфизмов берутся фундаментальные направленности. Тождественный морфизм 1: $X \to X$ определим как морфизм, состоящий из тождественных отображений 1: $A \to A$ и 1_a : $U_a \to X$ $\to U_a$. В качестве композиции gf морфизмов $f: X \to Y$ и $g: Y \to Z = \{W_v, t \in V\}$ $r_{vv'}, \Gamma$ } возьмем морфизм, состоящий из функции $fg: \Gamma \to A$ и набора $\{g_v f_{g(v)}, \Gamma\}$ отображений $g_v f_{g(v)}: U_{f(g(v))} \to W_v$. Легко проверяется, что при таком определении $\mathscr{C}_\mathscr{E}$ действительно является категорией.

Определение 3. Фундаментальные направленности f, g, отображающие $\mathscr E$ -спектр $\underline X$ в $\mathscr E$ -спектр $\underline Y$, назовем гомотопными, если для каждого β найдется $\alpha > f(\beta)$, $g(\bar{\beta})$ такое, что $f_{\bar{\beta}}p_{f(\bar{\beta})\alpha} \simeq g_{\bar{\beta}}p_{g(\bar{\beta})\alpha}$. При этом будем

нисать $f \simeq g$ или просто $f \simeq g$.

Доказательство следующих предложений легко провести совершенно аналогично доказательству соответствующих утверждений из (3).

 Π редложение 1. Отношение \simeq является отношением эквивалентно-

сти на множестве всех морфизмов в категории 8 г.

Предложение 2. \tilde{E} сли f, f': $X \rightarrow Y$ u g, g': Y - Z — nonapho гомотопные фундаментальные направленности ($f \simeq f'$, $g \simeq g'$), то $gf \simeq g'f'$: $X \rightarrow Y$.

Определение 4. Будем говорить, что \mathscr{E} -спектры X и Y \mathscr{E} -гомотопически эквивалентны, и писать $X \simeq Y$ или просто $X \simeq Y$, най-

дутся морфизмы $f: X \to Y$, $g: Y \to X$ такие, что $fg \simeq 1_x$, $gf \simeq 1_x$.

Предложение 3. Отношение \simeq является отношением эквивалентно-

сти на множестве всех &-спектров.

Определение 5. Совокупность всех \mathscr{E} -спектров, гомотопически эквивалентных данному \mathscr{E} -спектру X, назовем \mathscr{E} - типом X и обозначим

[X] (ср. определение из (3), стр. 44).

Пусть $X - \mathcal{E}$ -компактное пространство п i— некоторое замкнутое вложение X в $P \in \pi(\mathcal{E})$. Скажем, что \mathcal{E} -спектр X ассоциирован с замкнутым вложением i, если $\{U_{\alpha}\}_{\alpha \in A}$ есть база окрестностей iX в P и $p_{\alpha\alpha'}$ — естественное вложение $U_{\alpha'}$ в U_{α} .

Рассмотрим некоторые \mathscr{E} -спектры X, Y, ассоципрованные с замкнутыми вложениями i, j \mathscr{E} -компактных пространств X, Y в пространства P, Q соответственно. Пусть $f = \{f_{\beta}\}$, $g = \{g_{\beta}\}$ — фундаментальные направленности из X в Y. Нетрудно видеть, что f и g гомотопны тогда и только тогда, когда для каждой окрестности множества jY в Q найдется такой индекс β_1 , что при $\beta > \beta_1$ $f_{\beta} \simeq g_{\beta}$ в V на некоторой окрестности $O = O(\beta)$ множества iX в P.

Определение 6. Пусть X, Y — некоторые \mathcal{E} -спектры, ассоциированные с замкнутыми вложениями $i: X \rightarrow P$, $j: Y \rightarrow Q$ соответственно. Будем говорить, что фундаментальная направленность f $f: X \rightarrow Y$ порождает отображение $f: X \rightarrow Y$, если найдется такое β_i , что $f_{\theta}p_{f(\theta)} \simeq g_{\theta}f$ $\forall \beta > \beta_i$.

Предложение 4. Пусть $X, Y, Z - \mathcal{E}$ -спектры, ассоциированные с замкнутыми вложениями $i: X \to P$, $j: Y \to Q$, $k: Z \to R$, P, Q, $R \in \pi(\mathcal{E})$, соответственно и предположим, что фундаментальные направленности $f: X \to Y$, $g: Y \to Z$ порождают отображения $f: X \to Y$, $g: Y \to Z$ соответственно.

Tогда фундаментальная направленность \underline{gf} : $\underline{X} \rightarrow \underline{Z}$ порождает отображение gf: $X \rightarrow Z$. Фундаментальная направленность $\underline{1}_x$: $\underline{X} \rightarrow X$ порождает отображение 1_x : $X \rightarrow X$.

- 2. Целью этого параграфа является определение отношения шейповой эквивалентности в классе 8-компактных пространств. Для того чтобы это отношение удовлетворяло некоторым «естественным» условиям (см. теорему 1) здесь и в дальнейшем будем предполагать, что система 8 удовлетворяет следующим условиям
- 1°) Каждое пространство $Q \in \pi(\mathscr{E})$ является абсолютным окрестностным экстензором для класса $\pi(\mathscr{E})$, другими словами, $\pi(\mathscr{E}) \subseteq ANE(\pi(\mathscr{E}))$.
- 2°) Каждое пространство является окрестностным экстензором для пар вида $(P\times J, A)$, где $P\in\pi(\mathcal{E})$, а множество A имеет вид $A=B\times\{0\}\cup C\times J\cup UB\times\{1\}$ для некоторых замкнутых $B,C\subset P$.
- Замечание 1. Из условия 1°) следует, что каждое открытое $V \subset Q$, где $Q \in \pi(\mathcal{E})$, является абсолютным окрестностным экстензором в классе $\pi(\mathcal{E})$.
- Замечание 2. Условие 2°) следует из условия 1°), например, в том случае, когда класс $\pi(\mathcal{E})$ замкнут относительно произведения на отрезок [0, 1] или, что более обще, на пространство E, содержащее отрезок.

Замечание 3. Легко видеть, что $Q = A(N)E(\pi(\mathscr{E}))$ тогда и только тогда, когда $Q = A(N)E(\Re(\mathscr{E}))$.

Можно доказать следующие три леммы.

I е м м а 1. При любых замкнутых вложениях $i: X \rightarrow P$, $j: Y \rightarrow Q$ 8-ком-пактных пространств X, Y и произвольных ассоциированных c ними 8-спектров X, Y всякое отображение $f: X \rightarrow Y$ порождается некоторой фундаментальной направленностью $f: X \rightarrow Y$.

J емма 2. Пусть X, $X - \mathscr{E}$ -спектры, ассоциированные с замкнутыми вложениями пространств X и Y. Фундаментальные направленности f, g: $X \rightarrow Y$ гомотопны тогда и только тогда, когда для каждой окрестности V = -jY найдется такой индекс β_1 , что $f_{\beta} \simeq g_{\beta}$ на iX в V при $\beta > \beta_1$

 Π емм а 3. Для любых гомотопных отображений f, g: $X \rightarrow Y$ всякие порождающие их фундаментальные направленности f, g: $X \rightarrow Y$ гомотопны.

T е о р е м а 1. Пусть $\mathscr E$ -компактные пространства \overline{X} и Y гомотопически эквивалентны.

Тогда любые $\mathscr E$ -спектры $\underline X$ и $\underline Y$, ассоциированные c их замкнутыми вложениями $i\colon X{\to}P,\, j\colon Y{\to}Q,\, P,\, Q{\in}\pi(\mathscr E),\, \mathscr E$ -эквивалентны. Другими словами, из $X{\simeq}Y$ следует $X{\simeq}Y$.

Следствие 1. Для любых двух замкнутых вложений i,j \mathscr{E} -ком-пактного пространства X в пространстве класса $\pi(\mathscr{E})$ любые ассоциированные с ними \mathscr{E} -спектры \underline{X} и \underline{X}' \mathscr{E} -эквивалентны.

Определение 7. \mathscr{E} -компактные пространства X и Y будем называть \mathscr{E} -эквивалентны ми, если ассоциированные с ними \mathscr{E} -спектры \mathscr{E} -эквивалентны. Если X и Y \mathscr{E} -эквивалентны, то будем писать $X \simeq Y$.

Следствие 2. Для любой системы $\mathscr E$ (удовлетворяющей условиям 1°), 2°)) отношение \cong между пространствами класса $\mathscr R(\mathscr E)$ не зависит от

выбора замкнутых вложений. Отношение $\simeq p$ азбивает пространства из

 $\Re(\mathcal{E})$ на классы эквивалентности.

Определение 8. Совокупность всех \mathscr{E} -компактных пространств, \mathscr{E} -эквивалентных данному $X \in \Re(\mathscr{E})$, будем обозначать $\operatorname{Sh}_{\mathscr{E}} X$ и называть шейпом X относительно системы \mathscr{E} .

Пусть $X \in \Re(\mathscr{E}_1) \cap \Re(\mathscr{E}_2)$ и системы \mathscr{E}_1 , \mathscr{E}_2 удовлетворяют условиям 1°), 2°). Тогда определены шейп X относительно системы \mathscr{E}_1 и шейп X относительно системы \mathscr{E}_2 . Следующая теорема устанавливает соотношение между этими шейпами.

Теорема 2. Пусть $\Re(\mathscr{E}_1) \subset \Re(\mathscr{E}_2)$. Тогда для любого $X \in \Re(\mathscr{E}_1)$ имеет место равенство $\mathrm{Sh}_{\mathscr{E}_1}X = \mathrm{Sh}_{\mathscr{E}_2}X \cap \Re(\mathscr{E}_1)$.

Следствие 1. $\Pi ycr_b X \in \Re(\mathscr{E}_1) \cap \Re(\mathscr{E}_2)$. $Tor \partial a \operatorname{Sh}_{\mathscr{E}_1} X \cap \Re(\mathscr{E}_2) = \operatorname{Sh}_{\mathscr{E}_2} X \cap \Re(\mathscr{E}_1)$.

Следствие 2. Если системы \mathcal{E}_1 , \mathcal{E}_2 таковы, что $\Re(\mathcal{E}_1) = \Re(\mathcal{E}_2)$ и $X \in \mathcal{R}(\mathcal{E}_1)$, тогда $\mathrm{Sh}_{\mathcal{E}_1}X = \mathrm{Sh}_{\mathcal{E}_2}X$. Другими словами, шейп пространства зависит только от класса компактности и не зависит от выбора системы.

Теорема 1 утверждает, что гомотопически эквивалентные пространства X, Y являются \mathcal{E} -эквивалентными для любой «подходящей» системы \mathcal{E} . Следующая теорема определяет достаточные условия, когда справедливо и обратное утверждение.

Теорема 3. Пусть класс $\pi(\mathcal{E})$ замкнут относительно произведения на отрезок, $X, Y \in \Re(\mathcal{E})$ и $X, Y \in \mathrm{ANE}(\pi(\mathcal{E}))$. Тогда пространства X, Y гомотопически эквивалентны в том и только в том случае, когда они \mathcal{E} -эквивалентны.

3. В этом разделе устанавливается связь рассмотренного в данной статье понятия шейпа в классе 8-компактных пространств с известными шейповыми характеристиками топологических пространств.

Теорема 4. Шейп метрического компакта в смысле K. Борсука совпадает с шейпом относительно системы $\{(J, \aleph_0)\}$, τ . е. с шейпом метрического компакта в классе метрических компонентов.

Теорема 5. Шейп бикомпакта, определенный C. Мардашичем и $I\!\!I$ ж. Сегалом (3), совпадает c шейпом относительно системы $\{I\}$, τ . e.

с шейпом бикомпакта в классе бикомпактов.

T е о р е м а 6. Шейп метрического пространства в смысле P. Фокса совпадает с шейпом относительно системы $\{(ANR(M), 1)\}$, где M — класс метризуемых пространств, τ . е. с шейпом метрического пространства в классе метрических пространств.

4. Приведем некоторые примеры, когда может быть определен шейп топологического пространства по общей схеме, рассмотренной в данной

работе. Справедлива следующая *

Теорема А. Топологическое пространство является полным метрическим сепарабельным пространством тогда и только тогда, когда оно принадлежит классу $\Re(\mathcal{E}_1)$, где $\mathcal{E}_1 = \{(R, \aleph_0)\}$.

Очевидно, что \mathcal{E}_1 удовлетворяет условиям $1^{\rm c}$), $2^{\rm o}$). Следовательно, определен шейп в классе полных метрических сепарабельных пространств.

Теорема Б. Топологическое пространство является полным в смысле Чеха финально-компактным пространством тогда и только тогда, когда оно принадлежит классу $\Re(\mathcal{E}_2)$, где $\mathcal{E}_2 = \{(R, \aleph_0), J\}$.

Система \mathscr{E}_2 удовлетворяет условиям 1°), 2°), следовательно, определен

шейп в классе полных финально-компактных пространств.

Теорема В. Пусть $\mathscr{E}_3 = \{(\{J_\sigma\}_\sigma, \aleph_o), J\}, \, \text{где}\,\, J_\sigma - \text{метрический ёж ко-лючести } \sigma$. Класс полных в смысле Чеха паракомпактов совпадает с классом $\Re(\mathscr{E}_3)$. Другими словами, топологическое пространство является полным в смысле Чеха паракомпактом тогда и только тогда, когда оно гомеоморфно замкнутому подпространству произведения счетного числа ежей на тихоновский куб.

Нетрудно видеть, что \mathscr{E}_3 удовлетворяет условням 1°), 2°). Следователь-

но, определен шейп в классе полных в смысле Чеха паракомпактов.

Теорема Γ^{**} . Класс р-паракомпактов совпадает с классом $\Re(\mathcal{E}_4)$, где $\mathcal{E}_4 = \{(\mathrm{ANR}(M), 1), J\}$. Другими словами, пространство является паракомпактом тогда и только тогда, когда оно гомеоморфно замкнутому подпространству произведения метрического абсолютного окрестного ретракта на тихоновский куб.

С другой стороны, как показал Ю. Лисица, абсолютный окрестностный ретракт в классе метрических пространств является окрестностным экстензором и для p-паракомпактов (см. (6)). Отсюда и из теоремы Γ нетрудно убедиться, что система \mathcal{E}_4 удовлетворяет условиям 1°), 2°). Следовательно,

определен шейп в классе р-паракомпактов.

Ясно, что $\Re(\mathscr{E}_1) \subset \Re(\mathscr{E}_2) \subset \Re(\mathscr{E}_3) \subset \Re(\mathscr{E}_4)$, класс $\Re(\mathscr{E}_2)$ содержит все бикомпакты, класс $\Re(\mathscr{E}_4)$ — все метрические пространства. Отсюда и из теоремы 2 устанавливается связь между соответствующими шейпами.

Автор выражает глубокую благодарность проф. Ю. М. Смирнову за постоянное внимание к работе, а также С. Богатому за полезные обсуждения.

Латвийский государственный университет им. П. Стучки Рига

Поступило 14 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ K. Borsuk, Fund. Math., 62, 223 (1968). ² K. Borsuk, Proc. Intern. Top. Symp. Hercognovi 1968, Beograd, 1969, p. 98. ³ S. Mardešić, J. Segal, Fund. Math., 72, 41 (1972). ⁴ S. Mardešić, J. Segal, Fund. Math., 72, 61 (1972). ⁵ R. Fox, Fund. Math., 74, 47 (1972). ⁶ Ю. Лисина, Сиб. матем. журн., 14, № 1, 128 (1973).

** Этот результат сообщен мне С. Богатым.

^{*} Теоремы A — В и некоторые другие результаты, связанные с понятием &-компактности, будут опубликованы в Бюлл. Польской академии наук, сер. матем.