УДК 541.67+547.245

XUMUR

В. А. КУЗНЕЦОВ, А. Н. ЕГОРОЧКИН, Д. В. МУСЛИН, Н. С. ВАСИЛЕЙСКАЯ

ИЗУЧЕНИЕ КОМПЛЕКСОВ С ПЕРЕНОСОМ ЗАРЯДА НЕКОТОРЫХ ПРОСТРАНСТВЕННО-ЗАТРУДНЕННЫХ ФЕНОЛОВ И ИХ ЭФИРОВ МЕТОДОМ ЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ

(Представлено академиком Г. А. Разуваевым 3 V 1973)

Наличие атомов кремния в молекулах пространственно-затрудненных фенолов и их кремнийорганических эфиров придает этим соединениям свойства, отличающие их от углеродных аналогов (1). Так, можно было ожидать, что из-за $d_{\pi}-p_{\pi}$ -взаимодействия в фрагментах Si—Aryl и Si—O электронная плотность на ароматическом кольце и на атоме кислорода в кремнийорганических производных будет отличаться от таковой в углеродных аналогах. Представлялось интересным спектроскопическое исследование данного явления.

Целью работы было пзучение комплексов с переносом заряда (к.п.з.) пространственно-затрудненных фенолов и их эфиров с тетрацианоэтиленом (ТЦЭ) методом электронной спектроскопии. Теоретические аспекты и спектроскопические свойства к.п.з. рассмотрены в ряде работ, например (2). При взаимодействии доноров Д с акцепторами А образуются комплексы ДА, которые поглощают свет в другой области, чем Д и А в отдельности. При этом происходит переход электрона от Д к А

В стабилизацию основного состояния (N) вносит вклад возбужденное состояние [E]. Волновые функции этих состояний

$$\psi_N = a\psi_0(\Pi, A) + b\psi_1(\Pi^+, A^-),$$
 (2)

$$\psi_{E} = a^{*} \psi_{1}(\Pi^{+}, \Lambda^{-}) - b^{*} \psi_{0}(\Pi, \Lambda). \tag{3}$$

Разность энергий состояний N и E равна энергии кванта полосы, характеризующей перенос заряда ($hv_{\pi 3}$) в электронном спектре. Показано, что

$$h\nu_{\pi 3} = I_{\pi} - E_{\Lambda} + C_{1} + \frac{C_{2}}{I_{\pi} - E_{\Lambda} + C_{1}},$$
 (4)

где $I_{\rm A}$ — потенциал ионизации донора; $E_{\rm A}$ — сродство к электрону акцептора; $C_{\rm 1}$ — константа, учитывающая электростатические взаимодействия в N-и E-состояниях; $C_{\rm 2}$ — константа, характеризующая энергию резонанса. Для неизменного акцептора (например, ТЦЭ), и полагая $E_{\rm A}$, $C_{\rm 1}$ и $C_{\rm 2}$ =const, (4) переходит в линейное уравнение

$$hv_{\pi 3} = mI_{\pi} + l, \tag{5}$$

где m и l — некоторые константы. В случае монозамещенных бензола были установлены линейные зависимости между $I_{\rm Z}$ и σ^+ -константами Гаммета (3), а поэтому и между $\nu_{\rm H3}$ и σ^+ (4). Это дает возможность изучения донорно-акцепторных свойств заместителей в бензольном кольце.

Значения частот переноса заряда (v_{13}) в к.п.з. с ТЦЭ пзученных соединений приведены в табл. 1. В экспериментальном спектре к.п.з. в соответствии с теоретическими данными (5 , 6) наблюдаются две полосы переноса заряда — v_1 и v_{11} . В бензоле высшая занятая молекулярная орбиталь e_{1g} дважды вырождена. Вырождение снимается при введении заместителей в кольцо. Потенциалы понизации и энергия двух образующихся орбиталей \mathbf{v} , и ψ_{1s} зависят от природы заместителей, их числа n и положения в кольце p (5). Разность энергии к.п.з. производных бензола и незамещенного бензола выражается соотношением

$$hv_{1, \text{II}} - hv_{\text{5eB3}} = -nv - p\varepsilon,$$
 (6)

где ү и є — параметры, характеризующие индуктивную и конъюгационную составляющие взаимодействия между заместителем и кольцом.

Полученные (табл. 1) и литературные данные (5, 6) показывают, что заместители больше влияют на положение полосы v_{II} . Электронодонорные заместители повышают энергию молекулярной орбитали ψ_s , приближая ее к энергии незаполненной орбитали ТЦЭ. Полоса переноса заряда смещается в длинноволновую область спектра (значение $v_{\pi 3}$ понижается). Электроноакцепторные заместители оказывают противоположное влияние. Уже переход от бензола к фенолу приводит к понижению $v_{\pi 3}$ от 26 000 до 25 000

Таблица 1

N±N± II.II.	R'O————————————————————————————————————							
	R ¹	R ²	\mathbb{R}^3	F				
- 1			1	1				

№№ п.п.	R1	R ²	\mathbb{R}^3	R ⁴	ν _ε , CΣΕ ⁻¹	cm-1
			l line		N 30 10 10	24216
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	H H H H H H H H H H H H Si(CH ₃) ₃	C(CH ₃) ₃ C(CH ₃) ₃ CH ₃ C(CH ₃) ₃ C(CH ₃) ₃ Si(CH ₃) ₃ Si(CH ₃) ₃ Si(CH ₃) ₃ Si(CH ₃) ₃ Br C(CH ₃) ₃ Br C(CH ₃) ₃ Si(CH ₃) ₃ Si(CH ₃) ₃ C(CH ₃) ₃ C(CH ₃) ₃	H C(CH ₃) ₃ C(CH ₃) ₃ OC(CH ₃) ₃ OSi(CH ₃) ₃ C(CH ₃) ₃ Si(CH ₃) ₃ C(CH ₃) ₃ C(CH ₃) ₃ Br CH ₃	C(CH ₃) ₃ H C(CH ₃) ₃ C(CH ₃) ₃ H H CH ₃ Si(CH ₃) ₃ C(CH ₃) ₃ C(CH ₃) ₃ C(CH ₃) ₃ Br J Cl C(CH ₃) ₃	21050 23550 23300 23250 22450 23600 23700 23350 23000 23400 23550 23250 23800 23600 23650 23450 23600 23600 23600 23600 23600	17700 17150 17400 14700 15600 17550 18500 16950 17250 17550 19700 21300 21750 17850 18200 20600 17700 17400 17400 17400 20400 23600

 (v_1) и 20 600 см⁻¹ (v_{11}) . Это связано с большими электронодонорными свойствами группы ОН $(\sigma_n^+ = -0.92)$ по сравнению с атомом водорода m=0). При замене атомов водорода в ароматическом кольце фенола на более электронодонорные группы Alk или $(CH_3)_3$ Si (табл. 1, соединения N^2N^2 1—3, 6—9) или при введении в кольцо еще одной электронодонорной группы $(N^2N^2$ 4, 5) значения v_{π_3} умекьшаются. Замещение электронодо-

норных алкильных радикалов или атомов водорода электроноакпепторными атомами галогенов приводит к возрастанию значений $\nu_{\pi \pi}$ ($N_2N_2 = 10 - 14$). Аналогичными закономерностями характеризуются к.п.з. кремнийорганических эфиров, соответствующих рассмотренным фенолам ($N_2N_2 = 45-22$). Однако эти качественные соображения об изменении положения уда при накоплении электронодонорных (или акцепторных) заместителей в кольце трудно использовать для изучения тонких деталей электронного влияния заместителей. Действительно, из уравнения (6) следует, что значения v_{ns} зависят как от числа заместителей, так и от их положения в кольпе. Поэтому для изучения $d_{\pi}-p_{\pi}$ -взаимодействия мы рассматривали результаты замены атома углерода (или водорода) на кремний только для таких пар соединений, в которых тип замещения сохраняется неизменным. При этом на положение упа влияют лишь электронные эффекты заместителей. Рассмотрим изменение положения v_{n_3} при замене третичнобутильной группы на триметилсилильную. При переходе от соединения № 2 к 6 и 7, 3 к 6 и от N_2 8 к 9 значения $v_{\pi a}$ возрастают (отметим, что переход от N_2 15 к N_2 16 и 17 также сопровождается увеличением v_{n3} , но при этом изменяется тип замещения ароматического кольца). Таким образом, значения $\nu_{\pi 3}$ указывают на то, что триметилсилильная группа является более электроноакцепторной по сравнению с третичнобутильной. Так как в отсутствие эффектов сопряжения атом углерода является более электроотрицательным по сравнению с кремнием (значения индуктивных констант о групп (СН3)3С и $(CH_3)_3$ Si составляют -0.3 и -0.9 (7)), рассматриваемые данные указывают на существование в производных кремния эффекта d_{π} — p_{π} -взаимодействия. Этот эффект состоит в частичном переносе л-электронов кольца на 3d-орбитали кремния, т. е. действует в направлении, обратном +I-эффекту групп (CH₃)₃Si. В результате триметилсилильная группа приобретает электроноакцепторный характер по отношению к группе (СН₃) ₃С. Однако по сравнению с типично электроноакцепторными заместителями в ароматическом кольце (бром, иод) группа (СН₃)₃Si остается электронодонором. На это указывают значительно большие упа в №№ 12 и 13 по сравнению о № 9, а также в №№ 21 и 10 по сравнению с №№ 18 и 8. Полученные данные показывают, что триметилсилильная группа, связанная с ароматическим кольцом, является более электронодонорной не только по сравнению с атомами брома или иода, но и по отношению к атому водорода. Это следует, например, из меньшего значения v_{II} в 8, чем в 3, и из меньшей величины v_1 в 2,4,6-три-триметилсилилфеноле (23 450 см⁻¹), чем в феноле $(25\,000\,\mathrm{cm}^{-1})$. Рассмотрим теперь, как изменяется положение $v_{\pi 3}$ при замене атомов

водорода или углерода фрагментов Aryl-O-H или Aryl-O-Cкремпий. Сопоставление значений уп₃ в соединениях №№ 4 и 5, 1 и 15, 6 и 16, 7 и 17, 9 и №№ 18, 10 и 19, 11 и 20, 12 и 21, 14 и 22 указывает на то, что триметилсилильная группа фрагмента Aryl-O-Si(CH₃)₃ является большим электроноакцептором, чем группа С(СН3) или атом водорода. Выше было показано, что в соединениях типа Aryl—Si(CH₃)₃ триметилсилильная группа по сравнению с атомом водорода электронодонорная. Непостоянство электронного эффекта группы (CH₃) «Si связано с тем, что ее суммарный электронный эффект складывается из индуктивного эффекта и d_{π} — p_{π} -взаимодействия. Индуктивный эффект этой группы имеет вполне определенную величину (константа $\sigma^* = -0.9$ (7)). Эффект $d_{\pi} - p_{\pi}$ -взаимодействия не сохраняется неизменным, а существенно зависит от природы заместителя Xв фрагменте $(CH_3)_3Si-X$. В том случае, когда X — атом кислорода, d_л-р_л-взаимодействие значительно более сильное, чем при X=Aryl. (Ранее одним из нас было показано (8), что, как и в ряду производных бензола, количественной мерой способности заместителей к сопряжению типа d_п—р_д-взаимодействия служат резонансные константы Гаммета о_п этих заместителей. Более сильное $d_{\pi}-p_{\pi}$ -взаимодействие в связи Si-O, чем в

связи Si-Aryl, приводит к тому, что триметилсилильная группа, входящая в состав соединений типа $(CH_3)_3Si-O-Aryl$, является большим электроноакцептором по сравнению с этой же группой в соединениях типа $(CH_3)_3Si-Aryl$.

Спектры получены на спектрофотометре «Perkin—Elmer 402» в области 300-850 мµ. Для получения спектров смешивались в объемном отношении 1:1 раствор изучаемого вещества в CH_2Cl_2 (~ 0.5 мол/л) и раствор TU3 в CH_2Cl_2 (~ 0.05 мол/л). Толщина поглощающего слоя составляла 1 см.

Институт химии Академии наук СССР Горький Поступило 20 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. В. Муслин, Кандидатская диссертация, Горький, 1972. ² С. N. R. Rao, S. N. Bhat, P. C. Dwivedi, Applied Spectroscopy Reviews, 5, 1 (1971). ³ Э. Стрейтвизер, Вкн. Современные проблемы физической органической химин, М., 1967, стр. 9. ⁴ Т. Г. Трейло, Г. Дж. Бервин и др., Журн. Всесоюзн. хим. общ. им. Д. И. Менделеева, 17, 392 (1972). ⁵ Е. М. Voigt, J. Ат. Сhem. Soc., 86, 3611 (1964). ⁶ Н. Воск, Н. Аlt, J. Ат. Сhem. Soc., 92, 1569 (1970). ⁷ А. Н. Егорочкин, С. Я. Хоршев и др., Изв. АН СССР, сер. хим., 1969, 1863. ⁸ А. Н. Егорочкин, Н. С. Вязанкип, ДАН, 193, 590 (1970).