УЛК 517.537

MATEMATUKA

Академик АН АзербССР И. И. ИБРАГИМОВ, С. И. ИБРАГИМОВ

О ПОЛНОТЕ НЕКОТОРЫХ СИСТЕМ ФУНКЦИЙ НА КРИВЫХ

Пользуясь обозначениями из книги (1), рассмотрим линейное нормированное пространство $A_R^{(p)}(\Gamma; \mu)$ функций F(z), принадлежащих одновременно пространствам $L_p(\Gamma; \mu)$ и A(|z| < R), где Γ — спрямляемый контур, расположенный в круге |z| < R (см. также $\binom{2}{2}$).

В настоящей статье при предположении, что $F(z) \in A_R^{(p)}(\Gamma; \mu)$, указываются условия полноты систем функций $\{F(\lambda_n z)\}$ и $\{z^n F^{(n)}(\lambda_n z)\}$ по норме пространства $L_p(\Gamma; \mu)$, $1 \le p \le \infty$, где $\{\lambda_n\}$ — некоторая последовательность комплексных чисел. В работе (2) доказано следующее

Y тверждение. Пусть спрямляемый контур Γ целиком лежит в угле $|\arg z| \leq \pi \sigma$, $0 \leq \sigma \leq 1$, а последовательность положительных чисел $\{\mu_n\}$ удовлетворяет условию

$$\int_{u^2}^{+\infty} \frac{n(u) - \sigma u}{u^2} du = +\infty,$$

 $r\partial e n(u)$ — число точек μ_n в интервале (0, u).

Tогда система функций $\{z^{\mu_n}\}$ полна в пространстве $L_p(\Gamma; \mu)$.

Для целой функции $F(z) \in A^{(p)}$ (Γ ; μ) введем в рассмотрение следующие величины:

$$M_{p}(F;\Gamma;r) = \max_{|z|=r} \left(\int_{\Gamma} |F(tz)|^{p} d\mu(z) \right)^{1/p}$$

$$S_F(\Gamma;r) = \frac{1}{2\pi} \int_0^{2\pi} \ln \max_{z \in \Gamma} |F(zre^{i\theta})| \cdot d\theta.$$

Через N(r) обозначим функцию Неванлинна последовательности $\{\lambda_n\}$,

$$N(r) = \int_{0}^{r} \frac{n(t)}{t} dt,$$

где N(r) — число точек последовательности $\{\lambda_n\}$ в круге |w| < r.

Теорема 1. Пусть спрямляемый контур Г целиком расположен в области $\{|z| < R, |\arg z| \le \pi\sigma, 0 \le \sigma \le 1\}$, а функция $F(z) \in A_R^{(\hat{p})}(\Gamma; \mu)$ такова, что $F^{(\mu_n)}(0) \neq 0$, $F^{(\nu_n)}(0) = 0$, $n = 0, 1, \ldots$, где $\{\mu_n\} = \{n\} \setminus \{\nu_n\}$, причем последовательность положительных чисел $\{\mu_n\}$ удовлетворяет условию

$$\int_{n^2}^{+\infty} \frac{n(u) - \sigma u}{n^2} du = +\infty. \tag{1}$$

Tогда, если для последовательности комплексных чисел $\{\lambda_n\}$, $|\lambda_n| < 1$, выполняется условие

$$\lim_{r \to 1-0} N(r) = -\infty, \tag{2}$$

то система функций $\{F(\lambda_n z)\}$ полна в пространстве $L_p(\Gamma; \mu)$.

Доказательство. Каждый линейный непрерывный функционал $\Phi[F]$ в пространстве $L_p(\Gamma;\mu)$ имеет вид

$$\Phi[F] = \Phi_{g}[F] = \int_{\Gamma} F(z) g(z) d\mu(z),$$

где $g(z) \in L_q(\Gamma; \mu)$, 1/p+1/q=1. Согласно известной теореме С. Банаха (³) для доказательства нашего утверждения достаточно установить, что любой линейный непрерывный функционал в $L_p(\Gamma; \mu)$, аннулирующийся на функциях системы $\{F(\lambda_n z)\}$, обращается в нуль на всем пространстве, т. е. $g(z) \equiv 0$ почти всюду по мере $\mu(z)$.

Рассмотрим вспомогательную функцию

$$\varphi(t) = \int_{\Gamma} F(tz) g(z) d\mu(z), \qquad (3)$$

где $g(z) \in L_q(\Gamma; \mu)$. Имеем

$$\Phi[F(\lambda_n z)] = \varphi(\lambda_n) = \int_{\Gamma} F(\lambda_n z) g(z) d\mu(z) = 0.$$
 (4)

Требуется показать, что из выполнения условий (4) следует, что $g(z) \equiv 0$ почти всюду по мере $\mu(z)$. Легко видеть, что $\phi(t) \equiv A(|z| < 1)$.

В силу известной теоремы единственности для ограниченных функций, если функция $u(t) \in A_R$ такова, что $u(\lambda_n) = 0$, то из условия $\lim_{r \to R = 0} N(r) = -\infty$, где N(r) функция Неванлинна последовательности

 $\{\lambda_n\}$, следует, что $u(t) \equiv 0$ (см. (i), стр. 42).

В силу этой теоремы единственности из соотношений (4) следует, что функция $\varphi(t)=0$. Но тогда в силу единственности степенного ряда все коэффициенты Тейлора функции $\varphi(z)$ равны нулю, т. е. $\varphi^{(n)}(0)=0$, $n=0,\ 1,\ldots$ Учитывая условие теоремы $F^{(\mu_n)}(0)\neq 0$, $F^{(\nu_n)}(0)=0$, $n=0,\ 1,\ldots$, получим

$$\Phi[z^{\mu_n}] = \varphi^{(\mu_n)}(0) = \int_{\mathbf{r}} z^{\mu_n} F^{(\mu_n)}(0) g(z) d\mu(z) = 0.$$

Следовательно, исходная система будет полной в $L_p(\Gamma; \mu)$, так как в силу условия (1) теоремы полной в нем является система $\{z^{\mu_n}\}$ (см. $(^2)$). В самом деле, из полноты системы функций $\{z^{\mu_n}\}$ в $L_p(\Gamma; \mu)$ следует, что $g(z) \equiv 0$ почти всюду по мере $\mu(z)$. Но тогда из соотношений (3) следует полнота системы $\{F(\lambda_n z)\}$ в пространстве $L_p(\Gamma; \mu)$.

Замечание. 1. В теореме 1 в случае, когда $F^{(n)}(0) \neq 0$, $n=0, 1, \ldots$, условие (1) отпадает, так как система $\{z^n\}$ полна в пространстве $L_p(\Gamma; \mu)$.

Теорема 2. Пусть спрямляемый контур Γ целиком расположен в угле $|\arg z| < \pi\sigma$, $0 \le \sigma \le 1$, а целая функция $F(z) \in A^{(p)}(\Gamma; \mu)$ такова, что $F^{(\mu_n)}(0) \ne 0$, $F^{(\nu_n)}(0) = 0$, n = 0, $1, \ldots, z$ де $\{\mu_n\} = \{n\} \setminus \{v_n\}$, причем последовательность положительных чисел $\{\mu_n\}$ удовлетворяет условию (1).

Tогда, если для последовательности комплексных чисел $\{\lambda_n\}$ выпол-

няется условие

$$\lim_{r \to \infty} \left[S_r(\Gamma; r) - N(r) \right] = -\infty \tag{5}$$

или

$$\overline{\lim_{r \to \infty} \frac{\ln M_r[F; \Gamma; r]}{N(r)}} < 1, \tag{6}$$

то система функций $\{F(\lambda_n z)\}$ полна в пространстве $L_p(\Gamma; \mu)$.

Доказательство. Рассмотрим вспомогательную функцию $\varphi(t)$, определяемую равенством (3), удовлетворяющую условиям, что $\varphi(\lambda_n) = 0$, $n = 0, 1, \ldots$, и покажем, что при этом $g(z) \equiv 0$ почти всюду по мере $\mu(z)$.

Легко видеть, что $\phi(t)$ есть целая функция. Согласно неравенству Гёльдера имеем

$$|\varphi(t)| \le \left\{ \int_{r} |F(tz)|^{p} d\mu(z) \right\}^{1/p} \cdot \left\{ \int_{r} |g(z)|^{q} d\mu(z) \right\}^{1/p}.$$
 (7)

В силу теорем единственности для целых функций, если функция u(t) такова, что $u(\lambda_n)=0$, то из условия

$$\lim_{r \to \infty} [S_u(r) - N(r)] = -\infty, \quad S_u(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \ln|u(re^{i\theta})| \cdot d\theta,$$

или

$$\overline{\lim_{r\to\infty}} \frac{\ln M(u;r)}{N(r)} < 1$$

следует, что u(t) = 0 (см. (1), стр. 52).

Из неравенства (7), учитывая условие (5), (6) теоремы, имеем

$$\lim_{r \to \infty} \left[S_{\varphi}(r) - N(r) \right] \leq \lim_{r \to \infty} \left[S_{F}(\Gamma; r) - N(r) \right] = -\infty$$

и

$$\overline{\lim_{r\to\infty}} \frac{\ln M(\varphi; r)}{N(r)} \leq \overline{\lim_{r\to\infty}} \frac{\ln M_p(F; \Gamma; r)}{N(r)} < 1.$$

Из этих неравенств, в силу приведенной выше теоремы единственности для целых функций следует, что $\varphi(t)=0$. Но тогда, в силу единственности степенного ряда, все коэффициенты Тейлора функции $\varphi(t)$ равны нулю, т. е. $\varphi^{(n)}(0)=0$. Учитывая условия теоремы $F^{(\mu_n)}(0)\neq 0$, $F^{(\nu_n)}(0)=0$, $n=0,1,\ldots$, получим

$$\Phi[z^{\mu_n}] = \varphi^{(\mu_n)}(0) = \int_{\Gamma} z^{\mu_n} F^{(\mu_n)}(0) g(z) d\mu(z) = 0,$$

Таким образом, функционал Φ аннулируется на всех функциях системы $\{z^{\mu_n}\}$. Следовательно, исходная система будет полной в $L_p(\Gamma; \mu)$, так как в силу условия (1) теоремы полной в нем является система $\{z^{\mu_n}\}$.

Замечание 2. Полнота системы $\{F(\lambda_n z)\}$, когда F(z) — целая функция, в пространстве $L_p(0,R)$, $0 < R < \infty$, рассматривалась И. И. Ибрагимо-

вым другим методом (4).

Теорема 3. Пусть спрямляемый контур Γ целиком расположен в области $\{|z| < R, |\arg z| \le \pi\sigma, 0 \le \sigma \le 1\}$, а функция $F(z) \equiv A_R^{op}(\Gamma; \mu)$ такова, что $F^{(\mu_n)}(0) \ne 0$, $F^{(\nu_n)}(0) = 0$, n = 0, $1, \ldots, \epsilon \partial e \{\mu_n\} = \{n\} \setminus \{v_n\}$, а последовательность положительных чисел $\{\mu_n\}$ удовлетворяет условию (1).

Тогда, если для последовательности комплексных чисел $\{\lambda_n\}$, $|\lambda_n| < 1$,

выполняется условие

$$\lim_{n\to\infty} \lambda_n = 0, \quad \sum_{n=0}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty, \tag{8}$$

то система функций $\{z^nF^{(n)}(\lambda_nz)\}$ полна в пространстве $L_p(\Gamma;\mu)$.

Доказательство. Вспомогательная функция $\phi(t)$, определяемая равенством (3), удовлетворяет условиям

$$\Phi\left[z^{n}F^{(n)}\left(\lambda_{n}z\right)\right]=\varphi^{(n)}\left(\lambda_{n}\right)=0.$$

В силу теоремы единственности для аналитических функций, если функция $u(t) \in A_R$ такова, что $u^{(n)}(\lambda_n) = 0$, то из условия $\lim \lambda_n = 0$ и

 $\sum |\lambda_{n+1} - \lambda_n| < \infty$ следует, что $\phi(t) = 0$ (см. (1), стр. 488). Таким образом,

из условия (8) теоремы и из приведенной выше теоремы единственности следует, что $\varphi(t) \equiv 0$. Проведя остальные рассуждения аналогично теоре-

ме 1, нетрудно убедиться в справедливости утверждения теоремы.

Теорема 4. Пусть спрямляемый контур Γ целиком расположен в угле $|\arg z| \leq \pi \sigma$, $0 \leq \sigma \leq 1$, а целая функция $F(z) \in A^{(p)}_{\infty}(\Gamma; \mu)$ такова, что $F^{(\mu_n)}(0) \neq 0$, $F^{(\nu_n)}(0) = 0$, $n = 0, 1, \ldots$, $e \partial e \{\mu_n\} = \{n\} \setminus \{\nu_n\}$, причем последовательность положительных чисел $\{\mu_n\}$ удовлетворяет условию (1).

Tогда, если для последовательности комплексных чисел $\{\lambda_n\}$ выпол-

няется условие

$$|\lambda_0| \leq |\lambda_{i_0}| \leq \ldots \leq |\lambda_n| \leq \ldots, \quad \lim |\lambda_n| = \infty$$

u

$$\ln M_p(F; \Gamma; r/\theta) \leq C(\theta) \cdot n(r), \quad C(\theta) \leq \ln \frac{1-\theta}{\theta}, \quad \theta < \theta < \frac{1}{2},$$
 (9)

еде n(r) — число точек последовательности $\{s_n\}$, $s_n = |\lambda_0| + \sum_{k=1}^n |\lambda_k - \lambda_{k-1}|$,

расположенных в интервале (0, r), то система функций $\{z^nF^{(n)}(\lambda_nz)\}$

полна в пространстве $L_p(\Gamma; \mu)$. Доказательство. Рассмотрим ту же вспомогательную функцию $\phi(t)$ и заметим, что $\Phi[z^n F^{(n)}(\lambda_n z)] = \phi^{(n)}(\lambda_n) = 0$. Легко видеть, что для целой функции $\varphi(t)$, согласно неравенству Гёльдера, имеем

$$|\varphi(t)| \leqslant \int_{\mathbb{R}} |F(tr)|^p d\mu(z) \bigg\}^{1/p} \cdot \bigg\{ \int_{\mathbb{R}} |g(z)|^q d\mu(z) \bigg\}^{1/q}.$$

Отсюда, учитывая условие (9), находим

$$\ln M(\varphi; r/\theta) \leq \ln M_{\nu}(F; \Gamma; r/\theta) \leq C(\theta) n(r).$$

В силу теоремы единственности для целых функций, если функция u(t) делая и такова, что $u^{(n)}(\lambda_n) = 0$, из условия

$$\ln M(u; r/\theta) \leq C(\theta) n(r)$$

следует, что u(t) = 0 (см. (1), стр. 490). Таким образом, в силу приведенной выше теоремы единственности, из условия (9) следует, что $\phi(t) = 0$. Проведя остальные рассуждения аналогично теореме 2, нетрудно убедиться в справедливости утверждения теоремы.

Институт математики и механики

Поступило

Институт кибернетики Академии наук АзербССР Баку

19 VI 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

 4 И. И. Ибрагимов, Методы интерполяции функций и некоторые их применения, «Наука», 1971. 2 И. И. Ибрагимов, И. С. Аршон, ДАН, 208, № 2 (1973). 3 С. Банах, Курс функционального анализа, Киев, 1948. 4 И. И. Ибрагимов, Изв. АН АзербССР, сер. физ.-техн. и матем. наук, № 3 (1969).