УДК 532.592.2

ГИДРОМЕХАНИКА

В. Г. ИВАННИКОВ, Г. Д. РОЗЕНБЕРГ

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ НЕУСТАНОВИВШЕГОСЯ ТЕЧЕНИЯ СЛАБЫХ РАСТВОРОВ ПОЛИМЕРОВ

(Представлено академиком Л. И. Седовым 18 IV 1973)

В настоящей статье излагаются результаты исследования затухания скачка давления в слабых растворах полиакриламида (ПАА, обработка СТУ12 \mathbb{N} 02 21-64).

Уравнения неустановившегося течения упругой вязкой жидкости в упругой трубе при неравномерном распределении скоростей по ее сечению и скорости течения, много меньшей скорости звука, имеют вид (¹)

$$-\frac{\partial p}{\partial x} = \rho \left(\frac{\partial w}{\partial t} + \frac{\lambda |w|}{8\delta} w \right), \quad -\frac{\partial p}{\partial t} = \rho c^2 \frac{\partial w}{\partial x}, \tag{1}$$

где p, ρ , w — соответственно давление, плотность и скорость течения жидкости, средние в сечении трубы; c — приведенная скорость звука; δ — гидравлический радиус; λ — коэффициент гидравлического сопротивления (предполагается, что значения λ при установившемся и неустановившемся течениях зависят от w одинаковым образом — гипотеза квазистационарности). Можно показать, что (1) будут справедливы также при течении неньютоновских жидкостей, в частности, растворов полимеров, причем введение гипотезы квазистационарности не является обязательным (2).

Для головных значений волн давления при линеаризованном и квадратичном законах трения имеем соответственно (3)

$$\bar{p} = \bar{p}_1 e^{-hx}, \quad \bar{p} = \bar{p}_1 e^{-m(x)x},$$
 (2)

где

$$k=a/c, \quad a=\lambda_0 |w_0|/(8\delta),$$
 (3)

$$m(x) = \frac{a}{c} + \frac{1}{x} \ln \left[1 + \frac{\overline{w}}{2w_0} \left(1 - \exp\left(-\frac{a}{c} x \right) \right) \right], \tag{4}$$

 \bar{p} — возмущение давления над его стационарным значением, \bar{p}_1 , \bar{w}_1 — возмущения давления и скорости в сечении x=0, w_0 — стационарное значение скорости, λ_0 — коэффициент гидравлического сопротивления при $w=w_0$.

Из (4) следует, что

$$m(0) = \frac{a}{c} \left(1 + \frac{\overline{w}_1}{2w_0} \right), \quad m(\infty) = \frac{a}{c},$$

т. е. с ростом x разница между коэффициентами затухания при линеаризованном и квадратичном законах трения, т. е. между a/c и m(x), уменьшается. Так как при торможении потока $0 \le \overline{w}_1 < w_0$ ($-w_0 \le \overline{w}_1 < 0$), то

$$1/2a/c \leq m(0) \leq a/c$$
.

Экспериментальное исследование затухания скачка давления было предпринято с целью проверки справедливости гипотезы квазистационарности при течении слабых растворов полимеров.

Экспериментальная установка (см. рис. 1) состояла из напорного бака 1, самотечного стального трубопровода 2 диаметром 25 мм и длиной

110 м, быстродействующего затвора 3 (время срабатывания $5 \cdot 10^{-3}$ сек.) и мерной емкости 4. При закрытии затвора в трубе возникал гидравличе-

ский удар с достаточно крутым фронтом.

Давления по концам мерного участка I-II длиной l=73,4 м при стационарном течении измерялись образцовыми монометрами 5 (при малых скоростях течения — ртутным дифманометром), а при нестационарном — индуктивными датчиками ДД-10. Сигналы от датчиков усиливались индикатором ИД-2И и регистрировались светолучевым осциллографом. Расход жидкости определялся объемным способом.

Экспериментальная установка была протарирована на воде. При этом измеренная скорость звука отличалась от расчетной не более чем на 0,5%,

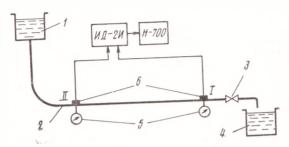


Рис. 1. Схема экспериментальной установки

а ударное давление от рассчитанного по формуле Жуковского — не более чем на 2%.

Экспериментальные значения коэффициента затухания $k_{\mathfrak{p}}$ определялись в соответствии с (2) как

$$k_{\mathfrak{d}} = (\ln \bar{p}_{\mathfrak{d}} - \ln \bar{p}_{\mathfrak{d}})/l, \tag{5}$$

где \bar{p}_2 — возмущение давления в сечении II (см. рис. 1).

Все опыты повторялись многократно, что позволило провести статистическую обработку результатов эксперимента. В процессе обработки выяснилось, что во всех случаях имело место соотношение $\sigma = (\pi/2)^{1/3}\eta$, где σ средняя квадратическая, η — средняя арифметическая опибка отдельного измерения, т. е. распределение опибок следовало нормальному закону.

Для сравнения с экспериментом были подсчитаны теоретические значения коэффициентов затухания: для линеаризованного закона трения по

Таблица 1

Рабочая жидкость	C, %	w₀, M/cek	n	k ₃ ⋅104, м ⁻¹	k⋅10 ⁴ , M ⁻¹	$m \cdot 10^4$, M^{-1}	k 9/k
Вода ПАА	0,03 0,020 0,01 0,005 0,0025 0,001 0,0003	1,30 1,62 1,57 1,51 1,57 1,56 1,60 1,54 1,53 1,58 1,54 1,59 1,58 1,58 1,53 1,63	25 30 23 23 30 25 26 28 29 25 30 24 19 25 23	$\begin{array}{c} 5,15(1\pm0,02)\\ 5,75(1\pm0,01)\\ 5,75(1\pm0,01)\\ 5,28(1\pm0,02)\\ 5,05(1\pm0,03)\\ 5,28(1\pm0,03)\\ 5,39(1\pm0,03)\\ 4,29(1\pm0,03)\\ 4,68(1\pm0,02)\\ 4,98(1\pm0,04)\\ 4,83(1\pm0,03)\\ 4,56(1\pm0,03)\\ 4,96(1\pm0,004)\\ 5,27(1\pm0,02)\\ 5,11(1\pm0,02)\\ 5,28(1\pm0,02)\\ \end{array}$	4,75 5,81 2,24 2,58 2,03 1,87 2,24 2,40 2,57 2,68 2,85 2,91 2,96 2,93 3,50 4,45	2,35 2,75 1,11 1,27 1,01 0,93 1,11 1,19 1,27 1,33 1,41 1,44 1,46 1,45 1,73 2,20	1,08 0,99 2,36 1,96 2,72 2,82 2,41 1,79 1,82 1,86 1,69 1,57 1,67 1,67 1,46 1,19

формуле (3), а для квадратичного — по формуле (4) при x=l, величина λ_0 определялась при этом из эксперимента. Результаты этих расчетов, экспериментальные значения коэффициента затухания k_0 , а также значения концентрации раствора полимера C, скорости стационарного течения w_0 , число опытов n при данной скорости w_0 приведены в табл. 1 и на рис. 2. Значения коэффициента гидравлического сопротивления при течении воды $\lambda_{0\rm B}$ и раствора полимера $\lambda_{0\rm m}$ определены экспериментально при условии $w_{0\rm B}{=}w_{0\rm m}$, где $w_{0\rm B}$, $w_{0\rm m}$ — стационарная скорость течения воды и раствора полимера соответственно.

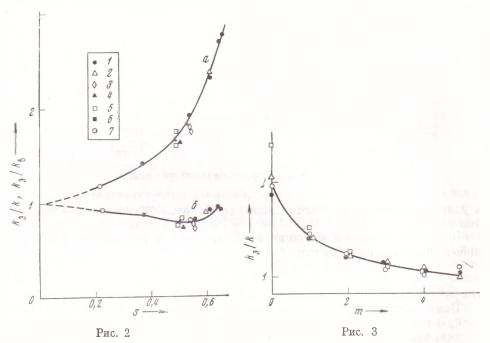


Рис. 2. Зависимость отношений k_9/k (a) и k_9/k_B (б) от величины относительного снижения сопротивления $s=1-\lambda_{0\rm H}/\lambda_{0\rm B}$ при течении раствора ПАА различной концентрации (г/см³): $1-3\cdot 10^{-4},\ 2-2\cdot 10^{-4},\ 3-1\cdot 10^{-4},\ 4-5\cdot 10^{-5},\ 5-25\cdot 10^{-6},\ 6-1\cdot 10^{-5},\ 7-5\cdot 10^{-6}$

Рис. 3. Зависимость отношения k_3/k от числа перекачек m всего объема раствора ПАА с начальной концентрацией $C = 3 \cdot 10^{-4}$ г/см³ для 4 серий одинаковых опытов

Из табл. 1 и рис. 2 следует, что в отличие от воды, при течении слабых растворов ПАА гипотеза квазистационарности неприменима.

Одновременно с описанными экспериментами было проведено исследование влияния деградации раствора полимера (C=0.03%) на коэффициент затухания. Деградация раствора происходила при его перекачке из мерной емкости 4 в напорный бак 1 быстроходным центробежным насосом.

Результаты эксперимента представлены на рис. 3. Из этого графика видно, что по мере деградации раствора полимера коэффициент затухания приближается к коэффициенту затухания воды.

Московский институт нефтехимической и газовой промышленности им. И. М. Губкина

Поступило 17 IV 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. А. Чарный, Неустановившееся движение реальной жидкости в трубах, М.— Л., 1951. ² Г. Д. Розенберг, Изв. высш. учебн. завед., Нефть и газ, № 8 (1959). ³ И. А. Чарный, Г. Д. Розенберг, Приложение к книге Л. Бержерон: От гидравлического удара в трубах до разряда в электрической сети, М., 1962.