ГЕОХИМИЯ

Н. А. ЛИСИЦЫНА, И. Ю. ЛУБЧЕНКО, И. В. БЕЛОВА

РАСПРЕДЕЛЕНИЕ И ФОРМЫ НАХОЖДЕНИЯ МАЛЫХ ЭЛЕМЕНТОВ (Co, Ni, Cu, Zn, Pb, Cr, V, Ga) В КОРАХ ВЫВЕТРИВАНИЯ ВЬЕТНАМСКОГО ТИПА

(Представлено академиком Н. М. Страховым 25 VII 1972)

Особенности распределения многих малых элементов в изверженных породах разного состава хорошо известны после работ Вагера и Митчелла (²), Санделла и Голдича (в), Сена, Николдса и Аллена (в), Серых (7), Борисенок (в) и др. Что же касается продуктов выветривания этих пород, то для них вопрос о формах нахождения малых элементов почти не изучен, если не считать некоторых элювиальных образований, содержащих промышленные накопления отдельных элементов, например никеля и кобальта. Это, по-видимому, связано с методическими трудностями выделения продуктов изменения отдельных минералов из пестроокрашенных рыхлых элювиальных пород. Между тем, изучение особенностей распределения малых элементов между минералами в корах выветривания представляет как теоретический, так и практический интерес.

В настоящем сообщении излагаются результаты количественного изучения распределения ряда элементов в структурной коре выветривания вьетнамского типа. Сохранение структуры исходного порфирита облегчает выделение выветрелых минералов из элювия, которые затем могут быть проанализированы на содержание в них химических элементов.

Объектом исследования послужил разрез коры выветривания авгитлабрадоровых порфиритов, детально изученный ранее на Батумском побережье Кавказа (³). В нем выделяются две зоны: слабо выветрелых хлорит-метагаллуазитовых пород с примесью гетита, иногда гиббсита и уме-

ренно выветрелых гетит-метагаллуазитовых пород.

Свежий порфирит и продукты его изменения разделялись на минеральные фракции методами сепарации (лаборатории Геологического института и Института геологии рудных месторождений АН СССР) с последующей чисткой вручную под бинокуляром. В результате в свежей породе удалось выделить три группы минералов: 1) цветные — авгит+хлорит; 2) лейкократовые – лабрадор+цеолит и 3) магнетит. В элювии выделены продукты изменения тех же трех групи минералов. Минералы каждой группы анализировали на содержание в них Со, Ni, Cu, Cr, V, Pb методом количественного спектрального анализа; цинк определяли полярографически, Ga — колориметрически, путем извлечения хлоргаллата родамина Б (5). Для выяснения характера распределения элементов между минералами исходной породы и продуктов выветривания аналитические данные были пересчитаны с учетом содержания каждой из трех групп минералов в породе, т. е. рассчитан баланс элементов, как это практикуется для изверженных (7,8) или осадочных (1) пород. Результаты сведены в табл. 1 и 2.

Исходная порода, авгит-лабрадовый порфирит, имеет следующий количественно-минеральный состав (%): лабрадор 50; авгит 36; магнетит 8; апатит и цеолиты<1; хлорит>3; стекловатая масса <2. Распределение элементов в разных минеральных группах показано в табл. 1, из которой видно, какой пай вносит каждый из минералов в общее валовое количество элемента в породе. Естественно, что главная масса всех элементов свя-

Элемент	Содержание в минера- лах, 10-4 %			Содержание в по- роде, 10-4 %				Доля элемента, %			
	авгит и хло- рит (40% породы)	лабрадор и цеолит (52% породы)	магнетит (8% поро- ды)	за счет ав- гита и хло- рита	за счет лаб- радора и цеолита	за счет маг- петита	M	в авгите и хлорите	в лабрадорс и цеолите	в магнети- те	в силика- тах (в сумме)
Co Ni Cu Zn Pb Cr	47 86 10 92 5 272 263	6 9 41 Не опр. 3 < 5 400	210 250 50 366 5 500 530	19 34 4 37 2 109 105	3 5 21 6 ~ 2 ~ 3 52	17 20 4 29 0,4 40 42	39 59 29 72 44 152 199	48,6 57,5 13,8 51,4 45,5 71,9 53	7,8 8,5 72,4 8,3 45,5 2	43,6 34,0 13,8 40,3 ~ 9 26,1 21	55,4 65 86,2 59,7 91 73,9
Ga	10	10	60	4	5	5	14	28,6	35,7	35,7	64,3

Таблица 2

Распределение малых элементов между мипералами продуктов выветривания порфирита (гетит-метагаллуазитовые глины)

Элемент		Содержание в ми- нералах, 10 ⁻⁴ %		Соле	ржа ние в 10-4 %	породе,	Доня элемента, %		
	Содерж. в породе, 10-4 %	гетит (35—37% породы)	Mathern (158 Hojegal)	за счет Гетига	за счет Магнети- та	за счет метагал- луазита	в гетите	в магие- тите	в мета- галлуа- зите
Со	47	34	210	13	31	3	28	66	6
Ni	73	94	250	35	38		48	52	5
Cu	50	40	50	15	8	27	28	16	56
Zn	120	92	366	31	55	31	28	46	26
Pb	8	3	5	1	1	6	13	13	74
Cr	82-205	180-364	40-1000	127	70	8	62	34	4
				63	6	13	77	7	16
V	230	350	530	123	80	27	53	35	12
Ga	30	30	60	11	9	10	37	30	33

запа в силикатах. В магнетите более других концентрируются (% от содержания в породе): Со \sim 44, Zn >40, Ga \sim 36, Ni 34 от их содержания в породе. Менее других ассоциируют с магнетитом Pb и Cu: в минерале содержатся 9-14% их количества.

Распределение элементов в силикатах имеет следующие особенности: главная масса Co, Ni, Zn, Cr и в меньшей степени V связана в темноцветных (авгит, хлорит), более 70% Си приходится на плагиоклаз и цеолит, Pb и Ga силикатов распределяются примерно поровну между темноцветными и плагиоклазами+цеолит.

Умеренно выветрелая гетит-метагаллуазитовая порода сохраняет реликтовую структуру, но весьма интенсивно выщелочена, пористость ее превышает 50 и даже 60%. В ее составе продукты изменения авгита и хлорита (гетит) составляют около 40%, метагаллуазит (преимущественно по плагиоклазам и цеолиту) более 50%. Магнетит, который хотя и окисляется, но не разрушается до конца, относительно накапливается: содержание его в элювии достигает 15%.

Малые элементы определялись в гетите и хлорите (псевдоморфозы по авгиту), а также в магнетите. Количество элементов в метагаллуазите находили по разности: общее содержание в породе минус суммарное содержание за счет гетита и магнетита. Результаты приведены в табл. 2.

Из нее видно, что главная масса почти всех элементов (от 54 до 94%) сосредоточена в продуктах изменения силикатов — галлуазите и гетите (небольшую примесь реликтовых минералов мы не учитываем). Между гетитом (продукт изменения темноцветных) и метагаллуазитом (по плагноклазам) элементы распределяются следующим образом: большая часть Со, Ni, Cr, V связана в гетите, Cu и Pb — в метагаллуазите, Zn и Ga делятся примерно поровну между этими двумя минералами. Роль магнетита, как концентратора малых элементов в коре выветривания, повышается по сравнению с исходной породой. В нем присутствует более 50% Со и Ni, более 40% Zn, более 30% Cr, V и Ga от валового содержания каждого элемента.

Дополнительные исследования показали, что с изменением количественпо-минерального состава исходной породы меняется и характер распределения элементов в элювии. Так, с увеличением содержания лабрадора, например до 70%, соотношения элементов в породе меняются: в темноцветных остается главная масса Со, Ni и Cr, с плагиоклазами же связана не только преобладающая часть Сu, но также и Pb, Ga и даже V. Zn распределен примерно поровну между темноцветными и плагиоклазами. Поскольку магнетита в этой разновидности всего 2%, содержание в нем всех элементов заметно уменьшается и даже для Со, Ni и Cr не превышает 24% от валового.

В итоге рассмотрения малых элементов в коре выветривания авгитлабрадорового порфирита на Батумском побережье Кавказа можно прийти к выводу, что в структурном элювии характер распределения малых элементов наследуется от исходной породы. Так, продукты выветривания темноцветных—главных носителей Со, Ni, Cr, V, Zn и Си в порфирите, являются носителями этих элементов и в элювии. Свинец и галлий, главная масса которых в порфирите, помимо магнетита, связана в плагиоклазах, в элювии обогащают продукты их изменения—метагаллуазитовые глины. Изменение количественных соотношений минералов в исходной породе влечет за собой изменение характера распределения малых элементов в продуктах выветривания.

Иначе обстоит дело в корах выветривания с нарушенной структурой материнской породы и отчетливыми проявлениями перераспределения вещества. Изучение элювия амфиболитов Украины с горизонтом бобовых бокситов (4) показало, что в этом процессе часть малых элементов ассоциируется с железом (Со, Ni, Zn, Cu, Pb), часть — с алюминием и титаном (Ga), ряд элементов (V, Cr) концентрируется и с Fe, и с Al. В основе этих ассоциаций лежит не столько унаследованность соотношений элементов в материнской породе, сколько сходство кристаллохимических свойств.

Поступило 18 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. А. Борисенок, Геохимия галлия, «Наука», 1971. ² Р. Л. Вагер, Л. Р. Митчелл, В кн. Редкие элементы в изверженных горных породах и минералах, ИЛ, 1952. ³ Н. А. Лисицына, М. А. Глаголева, В сборн, Геология и геохимия кор выветривания, «Наука», 1968. ⁴ N. А. Lisitsina, М. V. Разтик hova, Ann. Inst. Geol. Publ. Hung., 54, fasc. 3 (1970). ⁵ В. С. Салтыкова, Е. А. Фабрикова, ЖАХ, 13, № 1 (1958). ⁶ Э. Б. Санделл, С. С. Голдич, В кн. Редкие элементы в изверженных горных городах и минералах, ИЛ, 1952. ⁷ В. И. Серых, Геохимия, № 11 (1963). ⁸ В. И. Серых, Геохимия, № 9 (1964). ⁹ N. Sen, S. R. Nockolds, R. Allen, Geochim et cosmochim. acta, 16, № 1/3 (1959).