УДК 542.971.3+547.216+546.97+621.039.85

ХИМИЯ

Академик Б. А. КАЗАНСКИЙ, Г. В. ИСАГУЛЯНЦ, И. В. ГОСТУНСКАЯ, В. С. ГЛАДКОВ, Л. И. КОВАЛЕНКО

ИССЛЕДОВАНИЕ АРОМАТИЗАЦИИ ГЕКСАНА НА АЛЮМОРОДИЕВОМ КАТАЛИЗАТОРЕ МЕТОДОМ МЕЧЕНЫХ МОЛЕКУЛ

Метод меченых молекул (1), позволяющий получать непосредственную информацию о промежуточных продуктах в консекутивных реакциях, был применен в работе (2) для исследования реакции ароматизации н-гексана в присутствии никелевого и платинового катализаторов. Авторы проследили последовательное дегидрирование гексана до гексатриена, но не пришли к четкому выводу о том, на какой стадии происходит циклизация. В работе (3) этим же методом было показано, что в присутствии окисных катализаторов дегидроциклизация гексана идет единственным путем по схеме

гексан → гексен → гексадиен → гексатриен → диклогексадиен → бензол, причем стадии дегидрирования — каталитические, а замыкание гексатриена в циклогексадиен может протекать без участия катализатора. Таким об-

Таблица 1

Содержание бензола (вес.%) в катализатах различных углеводородов: 500°С, 60 мг катализатора

Исходный	В токе	В токе			
углеводород	водорода	гелия			
и-Гексан	2,1	1,2			
Гексен-1	3,2	7,9			
Циклогексан	32,3	58,2			

разом, окисный катализатор дегидроциклизации должен обладать лишь дегидрирующей способностью и от него не требуется каких-либо специфических циклизующих функций.

Представляло интерес изучить механизм реакции ароматизации в присутствии бифункционального алюмородиевого катализатора, который проявляет активность в реакции C_6 -дегидроциклизации μ -гексана, как это было показано ранее (4).

Опыты, проведенные в импульсной

микрокаталитической установке (табя. 1), показали, что в присутствии $\mathrm{Rh}/\mathrm{Al_2O_3}$ из циклогексана и гексена-1 образуется больше бензола, чем из μ -гексана; следовательно, и циклогексан и гексен-1 могут быть промежуточными продуктами реакции.

По какому пути идет ароматизация, можно было определить, исследовав превращения смесей гексена-1 и циклогексана с гексаном (1—С¹\state). После пропускания каждой из этих смесей над катализатором в промежуточном продукте (циклогексане или гексене) следовало бы ожидать появления радиоактивности.

Состав исходных смесей и их катализатов приведены в табл. 2. Мерой радиоактивности исходных компонентов и продуктов реакции служила величина α — молярная радиоактивность, отнесенная к молярной радиоактивности исходного углеводорода, взятой за 100%.

Как видно из данных табл. 2, гексены, содержащиеся в катализатах, были радиоактивными, в то время как при пропускании смесей гексана $(1-C^{14})$ с циклогексаном и гексена-1 $(1-C^{14})$ с циклогексаном метка в циклогексан не попадала ни в токе водорода, ни в токе гелия.

Состав и радиоактивность исходных смесей и их катализатов *; 500° C, 60 мг катализатора

Газ- носи- тель	Продукты крекинга		н-Гекса н		I.ексен <i>т</i>		Циклогексан		Бензол		Толуол	
	мол.%	α	мол.%	α	мол.%	α	мол.%	α	мол.%	α	мол.%	α
Не	19.3		88 63.6	100 88,0	12 **	0 58,0	_	_	12,1	65,5	2.9	88,0
Не	18.7	<u>-</u>	78 48,0	100	1,3	<u>-</u> 57	22 15,8	$\frac{0}{0}$	<u>-</u>	75.0	2,5	144,4
H_2	93,6	<u>-</u> 15,2	<u>64</u> 3,5	100	_	_	36 1,6	$\frac{0}{0}$	1,3	11,1		
He	<u>-</u>	60,0	8,7	100	77 **	100	23 15,3	$\frac{0}{0}$	19.3	160	6,7	<u> </u>

^{*} Цифры над чертой — исходная смесь, под чертой — катализат.

Так как мы не располагали сведениями о соотношении скоростей установления адсорбционного равновесия для промежуточного продукта (схема 1) и его дальнейших превращениях, то этот результат мог быть истолкован двояко: 1) циклогексан действительно не образуется на катализаторе; 2) циклизация гексана или гексена в циклогексан возможна, но последний превращается в бензол без десорбции в газовую фазу.

Чтобы сделать вывод однозначным, надо было показать, что циклогексан в условиях опытов десорбируется с поверхности катализатора. С этой целью проведено исследование тритий-водородного обмена исходной углеводородной смеси в тех же условиях. Предварительно установили, что при пропускании смеси гексана с циклогексаном в токе водорода, содержащего тритий, в отсутствие катализатора обмен не идет. Над $\mathrm{Rh}/\mathrm{Al}_2\mathrm{O}_3$ гексан и циклогексан обменивали водород на тритий в одинаковой степени (табл. 3).

Это свидетельствует о том, что в условиях проведения реакции десорбция циклогексана с поверхности алюмородиевого катализатора имеет место.

Вторым доказательством того, что циклогексан десорбируется с каталитической поверхности, являются результаты опытов, проведенных со смесью гексана $(1-C^{14})$ с циклогексеном при 400° С в токе водорода.

Таблица 3 Обмен водорода на тритий в гексане и циклогексане; 500° С; 60 мг катализатора

Продукты крекинга		н-Ге	ксан	Цик.	логексан	Бензол		
мол.%	кол.% % обмена мол.9		% обмена	мол.%	% обмена	мол.%	% обмена	
81,3	7,2	12,1	7,1	1,7	7,5	4,9	73,8	

Превращения μ -гексана, циклогексена и их смесей в токе водорода; 400° C; 10 мг катализатора

Исходная смесь или катализат	Продукты крекинга		н-Гексан		Циклогексан		Циклогексен		Бензол	
	мол.%	α	мол.%	α	мол.%	α	мол. %	a	мол.%	α
н-Гексан Катализат Исходная смесь Катализат Исходная смесь Катализат Циклогексан Катализат	80,0 	3,8	100 19,4 83,0 25,1 52,0 24,9	0 100 100 100 100 	0,7	0 0	17,0 0 48,0 0 100 0	0 0 0 0 0	0,6 	5,3

В этих условиях циклогексен одновременно гидрируется до циклогексана и дегидрируется до бензола, выступая как бы донором циклогексана на поверхности катализатора. Как видно из табл. 4, в этом случае метка в диклогексан также не попадала.

Эти результаты позволяют сделать вывод, что ни n-гексан, ни гексен-1 непосредственно в цикл не замыкаются. Остается предположить, что циклизация алифатического углеводорода в присутствии Rh/Al_2O_3 протекает на более поздних стадиях реакции.

Опыты проводили в микрокаталитической установке, соединенной с хроматографом (5) в токе гелия и водорода. Катализатор содержал 0,6 вес. $^{\%}$ Rh, нанесенного на γ -Al₂O₃, обработанную NaNO₃ из расчета 0,8 вес. $^{\%}$ на Na₂O. Размер зерен катализатора 0,25—0,5 мм. Опыты проводили при 400—500°, с навесками катализатора 10—60 мг. Объем подаваемой углеводородной смеси составлял 4 ил.

Радиоактивность измеряли жидкостным сцинтилляционным счетчиком «Isocap-300» с точностью 1%. Углеводороды по мере выхода из хроматографической колонки отбирались в кюветы с сцинтилляционной жидкостью.

Использованные в работе циклогексан, циклогексен и *н*-гексан были продажными препаратами, перегнанными на ректификационной колонке эффективностью 80 т.т. и в условиях хроматографического анализа примесей не содержали.

Гексен-1 $(1-C^{14})$ был получен по методике, описанной в работе (6). Гексан $(1-C^{14})$ получали гидрированием продуктов дегидратации (смесь гексенов) метил- C^{14} -бутилкарбинола, синтезированного по реакции Гриньяра из \mathcal{H} -валерианового альдегида и меченного радиоуглеродом CH_3J .

Удельная радиоактивность водорода, меченного тритием, была найдена по удельной радиоактивности воды, полученной при сжигании его над CuO при 700° C.

Институт органической химии им. Н. Д. Зелинского Академии наук СССР Москва

Поступило 31 V 1973

Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. И. Дербенцев, Г. В. Исагулянц, Усп. хим., 38, 4597 (1969). ² Z. Рааl, Р. Теtenyi, Acta chim. Acad. sci. hung., 54, 475 (1967); 55, 273 (1968); 58, 405 (1968). ³ Б. А. Казанский, Г. В. Исагулянцидр., Докл. на V Международн. конгрессе по катализу, Палм — Бич, США, август 1972, Препринт № 95. ⁴ И. В. Гостунская, Н. С. Горячевидр., ДАН, 203, 403 (1972). ⁵ Б. А. Казанский, Г. В. Исагулянцидр., ДАН, 191, 600 (1970). ⁶ Б. А. Казанский, М. И. Розенгартидр., ДАН, 197, 4085 (1971).