УДК 575.24

ГЕНЕТИКА

Р. Б. КИСЕЛЕВА, Л. С. НЕМЦЕВА

МОДИФИКАЦИЯ МУТАГЕННОГО ДЕЙСТВИЯ ГАММА-ИЗЛУЧЕНИЯ Cs¹³⁷ НА КЛЕТКИ СЕМЯН CREPIS CAPILLARIS ПРИ ПРОРАСТАНИИ В РАЗНЫХ СОЛЕВЫХ УСЛОВИЯХ

(Представлено академиком Н. П. Дубининым 8 VIII 1973)

Исследования показывают, что мутагенная эффективность ионизирующей радиации модифицируется многими естественными факторами, необходимыми для нормальной жизнедеятельности клеток, такими как кислород, вода, гормоны и т. п. Вопросы естественных модификаторов приобретают особое значение в связи с разработкой проблемы мутагенности в окружающей среде. Существенное значение имеет оценка эффекта мутагенов в реальных условиях биосферы, где имеется естественная локальная вариабельность. В частности, представляет особый интерес изучение действия мутагенов в разных солевых средах.

В настоящей работе изучено влияние солевых условий на мутагенный эффект гамма-лучей. Обнаружено, что ү-лучи вызывают структурные мутации хромосом с наиболее высокой частотой в бессолевых условиях и в среде с повышенным содержанием солей. Оптимальные солевые условия, по-видимому, способствуют восстановительным процессам в хромо-

соме.

Опыты проводили на клетках сухих семян Crepis capillaris урожая 1972 г. Четыре группы семян облучали ү-лучами Сs¹³⁷ в дозе 10 кр на установке ГУПОС с мощностью 520 р/мин и затем замачивали для проращивания в четырех разных солевых средах: 1) в среде, обычно применяемой для кратковременной инкубации клеток растений при проращивании семян, — в отстойной водопроводной воде, которая, как известно, содержит в растворенном состоянии различные минеральные соли, органические вещества, аммиак, двуокись углерода, воздух, ионы свинца, мышьяка, фтора, меди, цинка и др.; 2) в растворе Кнопа с обычным солевым составом; 3) в растворе Кнопа с удвоенным содержанием магниевой и калиевых солей; 4) в бессолевой среде, в качестве которой использовали дистиллированную воду. Проращивание семян производили в термостате при 26° в темноте. Одновременно в этих же солевых условиях проращивали необлученные семена. Для дифференциации клеток первого митоза в каждой среде был растворен колхицин в концентрации 0,01%. Проростки фиксировали смесью абсолютного этилового спирта с ледяной уксусной кислотой (3:1). Из верхушек главных корней проростков готовили временные давленые препараты и под световым микроскопом анализировали структурные мутации хромосом в метафазе первого митоза клеток корневой меристемы. Результаты наших опытов приведены в табл. 1.

В облученном материале наиболее низкая частота мутаций оказалась в клетках семян, прораставших в отстойной водопроводной воде. В клетках семян, прораставших в нормальном растворе Кнопа, мутации возникали со статистически достоверно более высокой частотой, чем в клетках семян, прораставших в отстойной водопроводной воде. При проращивании семян

в растворе Кнопа с повышенным содержанием солей и при проращивании семян в дистиллированной воде частота мутаций приблизительно вдвое превысила частоту мутаций, возникших при проращивании облученных семян в отстойной водопроводной воде. В необлученном материале при проращивании семян в усиленном солевом растворе Кнопа частота мутаций оказалась повышенной в два раза по отношению к частоте мутаций в клетках семян, прораставших в отстойной водопроводной воде (табл. 1). Как в облученном, так и в необлученном материале во всех солевых условиях основным типом структурных мутаций были хромосомные перестройки. Однако в облученных семенах, прораставших в среде с повышенным содержанием солей, и в семенах, прораставших в бессолевой среде, частота хроматидных перестроек была более высокой по сравнению с частотой

Таблица 1 Частота мутаций в клетках семян Crepis capillaris при проращивании в разных солевых условиях

Условия проращивания	Изучено		Число кле- ток с мута- циями		Число мутаций		Число хроматид- ных мутаций	
	семян	клеток	всего	%	всего	на 1 изу- ченную клетку	всего	на 1 изу- ченную клетку
		Бе	з обл	уче ни я	ī			
Дистиллированная	8	2209	32	1,5±0,3	32	0,015	3	0,001
вода Отстойная водопро-	9	2395	30	1,3±0,2	30	0,013	4	0,002
водная вода Раствор Кнопа Раствор Кнопа с по- вышенным содер- жанием солей	11 6	2967 1267	46 32	1,6±0,2 2,5±0,4	48 33	0,016 0,026	2	0,001 0,001
		Обл	учен	ие 10 к	р			
Дистиллированная	18	4255	1066	25,0± 0, 6	1327	0,31	16	0,004
вода Отстойная водопро-	14	3354	453	13,5 :±0, 5	501	0,15	6	0,001
водная вода Раствор Кнопа Раствор Кнопа с по- вышенным содер- жанием солей	8 7	1806 1418	304 347	16,6:± 0, 9 24,2:± 1,1	343 398	0,19 0,28	5 8	0,003 0,006

этих мутаций в семенах, прораставших в обычных солевых условиях, где уровень хроматидных мутаций не превышал их уровня при естественном мутагенезе в необлученном материале (табл. 1).

Результаты работы показывают, что мутагенная эффективность ионизирующей радиации в значительной степени зависит от солевых условий, в которых находится клетка. В данном случае для клеток растений солевые условия являются условиями питания. В тесной связи с содержанием солей, с условиями питания находится физиология клетки, работа ферментных систем и, как следствие, протекание мутационного процесса. Известно (¹), что повышение частоты мутаций происходит в случае уменьшения содержания азота, серы и фосфора в питательном растворе. По мнению исследователей (²), уменьшение количества этих элементов в клетке вызывает физиологические изменения, что приводит к повышению мутабильности. Как эти, так и наши данные свидетельствуют о пониженной эффективности мутагена в оптимальных условиях. По-видимому, это связано с особенностями работы ферментных систем репараций, которые в ходе эволюционного развития живых организмов оказались функционально при-

способленными к оптимальным условиям жизнедеятельности. Отклонение условий от оптимальных может вызывать ошибки в работе ферментов и приводить к мутациям.

Институт общей генетики Академии наук СССР Москва Поступило 8 VIII 4973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. Döring, H. Stubbe, Zs. Vererbungslehre, 75, 352 (1938). ² E. Knapp, R. Kaplan, Zs. indukt. Abstam. u. Vererb., 80, 501 (1942).