> Член-корреспондент АН СССР В. В. КОРШАК, С. А. ПЕТРОВА, Ю. Е. ДОРОШЕНКО, А. А. ИЗЫНЕЕВ, П. А. НАЗАРОВ

НОВЫЕ ПОЛИМЕРЫ С АЗОТСОДЕРЖАЩИМИ ГЕТЕРОЦИКЛАМИ В ЦЕПЯХ

Ранее были описаны термостойкие полимеры— полибензимидазолонафтоиленбензимидазолы, получаемые поликонденсацией ароматических тетрааминов с ангидридом 1,4,5-нафталинтрикарбоновой кислоты в полифосфорной кислоте, согласно следующей схеме (1, 2):

$$R$$
 NH_2 $NH_$

где R = -O -, $-SO_2 -$, $-CH_2$, -.

Эти полимеры растворимы в концентрированной серной кислоте, однако нерастворимы в органических растворителях, что затрудняет их практическое использование.

В связи с этим мы предприняли попытку повысить растворимость подобных полимеров путем введения в их макромолекулы, наряду с бензимидазольными и нафтоиленбензимидазольными, также 5-фенилпиразольных циклов.

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ &$$

где $R = -O_{-}, -SO_{2}_{-}, -CH_{2}_{-}, -.$

Основные характеристики полимеров приведены в табл. 1. Полученные полимеры растворимы на холоду в серной кислоте, трикрезоле, жидком феноле, смеси фенола с тетрахлорэтаном (например, $1:1,\ 2:1$ по весу), а полимеры с R=-O-, $-SO_2-$ также растворимы на холоду в диметилацетамиде, содержащем 5% хлористого лития.

Растворы полимеров в диметилацетамиде обнаруживают интенсивную желто-зеленую люминесценцию. Из растворов полимеров в трикрезоле получены прочные прозрачные пленки. В и.-к. спектрах полимеров и модельного соединения присутствует поглощение в области 1690 см⁻¹, характерное для С=О шестичленного лактамного цикла (3), 1550 см⁻¹ для

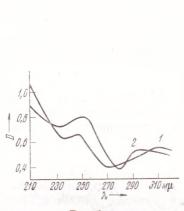


Рис. 1

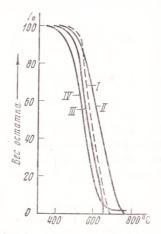


Рис. 2

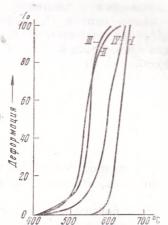


Рис. 3

Рис. 1. У.-Ф. спектры модельного соединения (1) и полимера (1)

Рис. 2. Динамический термогравиметрический анализ полимеров (скорость нагревания 4,5 град/мин в атмосфере воздуха. Номера кривых соответствуют номерам полимеров в табл. 1

Рис. 3. Термомеханические кривые полимеров (сняты на приборе Цетлина при нагрузке 1,6 кг/см² и скорости нагревания 3 град/мин). Обозначения такие же, как на рис. 2

C=N-в цикле (3), 1360 см⁻¹ для =N- (3), а также 1608, 1597 см⁻¹, характерное для пиразольного цикла (3, 4).

В у.-ф. области спектра (рис. 1) модельное соединение имеет λ_{max} 249 м μ , а полимеры λ_{max} 252 м μ . На рис. 2 приведены результаты термогравиметрического анализа полимеров на воздухе; наиболее устойчив в условиях термогравиметрического анализа полимер на основе 3,3'-диаминобензидина, не содержащий мостиковых групп между гетероциклически-

Характеристики полимеров

H H	Б	Найдено, %				Вычислено, %				7.3	
Поли		C	н	N	S	C	н	N	S	[n]**	Цвет
1	-	77.68*	3.83	13,63	_	79,71	3,68	13,95	_	0,43	Кирпич- но-крас- ный
III.	-30 ₂ - -0-	72.18 75.85*	3,54 4,01	12,83 13,72	4,19	72,06 77,61	3,33 3,58	12,61 13,51	4,81 —	1,76 1,84	Желтый Желто-
IV	—CH2—	77,25*	4,11	13,59	_	79,85	3,92	13,63	_	1,37	зеленый Желтый

[•] нное содержание углерода объясняется трудной сжигаемостью полимеров, что ждактерно для термостойких полимеров ароматического типа.

В воиментрированной серной кислоте при 20°.

🚃 🕶 стками, и наименее термостоек полимер с метиленовыми группами. 🔜 зачным термомеханических испытаний (рис. 3), все полимеры хараквысокими температурами размягчения.

химико-технологический институт
 И. Менделеева

Поступило 22 VIII 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

В. В. Коршак, А. А. Изынеев и др., ДАН, 198, 841 (1971). ² В. В. Кор-10. Е. Дорошенко и др., Высокомолек, соед., A12, 2647 (1972). ³ Л. Бел-11 — Инфракрасные спектры сложных молекул, ИЛ, 1963. ⁴ С. S. Rondestvedt, Chang, J. Am. Chem. Soc., 77, 6532 (1955).