УДК 550.42:552.323

ГЕОХИМИЯ

Г. Б. ЛЕВАШЕВ, Э. Д. ГОЛУБЕВА, И. Н. ГОВОРОВ

ВОЛЬФРАМ В ОСНОВНЫХ, СРЕДНИХ И КИСЛЫХ ВУЛКАНИТАХ КОНТИНЕНТАЛЬНОЙ ЧАСТИ ТИХООКЕАНСКОГО ПОЯСА (НА ПРИМЕРЕ СИХОТЭ-АЛИНЯ)

(Представлено академиком В. С. Соболевым 27 II 1973)

Среди магматических образований Сихотэ-Алиня наиболее полно охарактеризована распространенность вольфрама в позднемезозойских гранитоидах (1). Для других групп, и прежде всего пород основного — среднего состава, приводятся лишь отдельные определения (2, 3). Вместе с тем, сведения (4-6) по другим регионам мира свидетельствуют о нередко повышенном уровне содержаний W в основных вулканитах и их интрузивных аналогах.

Очевидно, наши представления о геохимической цикличности этого элемента будут далеко неполными или искаженными без учета данных по эффузивам, формировавшимся на разных этапах эволюции складчатых областей. По сравнению с породами глубинного облика информативная ценность такого рода образований существенно выше, так как определяемые в них содержания более соответствуют первоначальному уровню концентрации W в расплавах. Получаемые же при изучении интрузивных пород значения, как правило, фиксируют конечный результат поздне- и постмагматического перераспределения элемента в такого рода системах (1).

Сихотэ-Алинская складчатая область, входящая в систему Тихоокеанского пояса, — удобный полигон для региональных геохимических исследований. Она включает фрагменты древних кристаллических глыб (Ханкайской) и зоны молодой тихоокеанской складчатости. Согласно приводимым в табл. 1 материалам, фон вольфрама в магматических породах региона явно повышен. В этом отношении несколько выделяются орогенные и телеорогенные магматические образования. Не менее существенной, чем формационная принадлежность, представляется роль петрохимических свойств вулканических пород, и, следовательно, исходных расплавов. Прежде всего это относится к основным эффузивам и особенно хорошо видно на примере неизмененных платформенных (неоген-четвертичных) базальтоидов, геохимически детально изученных Э. Д. Голубевой.

Толеиты плато и щелочно-оливиновые базальты Западного Приморья содержат соответственно 1,7 и 3,6 г/т W (см. табл. 1). Эти средние цифры существенно и значимо различны (по критериям Стьюдента и Фишера). Обогащенные вольфрамом щелочные оливиновые базальты приурочены главным образом к зонам ранней консолидации, испытавшим впоследствии неоднократную блоково-разломную активизацию. Для них характерно сочетание повышенной калиевости и общей щелочности с низкой кремне-кислотностью и глиноземистостью. В петрохимически близких им щелочнооливиновых базальтах из зон молодой складчатости (Главный синклинорий) содержание вольфрама существенно понижается (рис. 2). По-видимому, в этом сказывается влияние глубинных факторов неодинакового накопления W в петрохимически сходных базальтоидных расплавах, очевидно связанных со спецификой развития коры и прилегающих областей мантии. В соответствии с петрологической моделью (7) исходные для дан-

ной группы пород щелочнобазальтовые магмы могли формироваться на глубине 70—120 км. Последние геофизические исследования показали (устное сообщение В. Р. Копылкова), что в Ханкайской зоне второй электропроводящий слой расплавленного вещества мантии находится на глубине 120—140 км и с переходом на восток приближается к поверхности Мохо. Следовательно, неодинаковый уровень накопления W в щелочно-

базальтовых магмах, возможно, обусловлен различием в глубинах формирования такого

рода расплавов.

Накопление вольфрама в выплавляемой фазе могло происходить при плавлении небогатого им мантийного пиролита. Согласно приводимым в (2, 3) данным, коэффициент распределения W между вмещающим базальтом и существенно оливиновым перидотитом включения, как правило, выше единицы. Уровень обычно определяемых содержаний для оливинов и пироксенов нодулей, как впрочем, и для подобных минералов гранитоидов, не превышает 4 мг/г (см. табл. 2), что сопоставимо с уже известными определениями (4). Это бесспорное свидетельство ограниченного вхождения вольфрама в безводные Fe-Mg-силикаты. Поэтому, если рассматривать встречаемые в базальтах нодули как остаточно фракционируемые при кристаллизации базальтовых магм продукты, можно сделать вывод о накоплении вольфрама в вы-

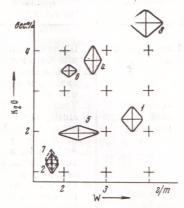


Рис. 1. График соотношения средних содержаний W — K_2O в магматических породах Сихотэ-Алиня. Номера доверительных эллипсов средних величин соответствуют номерам типов пород в табл. 1

плавляемой фазе, а не в остаточных продуктах. Очевидно, особую роль при этом играли калий и общая щелочность формировавшихся расплавов. Такого рода связь особенно четко обнаруживается при сравнении толеитов и щелочнооливиновых базальтов (см. рис. 1). Но в породах последней группы есть и отступления от правила: не всегда рост содержания вольфра-

Рис. 2. График зависимости содержаний вольфрама от суммы щелочей. 1— толеиты; 2— оливиновые базальты; 3— щелочно-оливиновые базальты Ханкайского срединного массива; 4— щелочно-оливиновые базальты молодых складчатых зон; 5— трахиандезиты

ма пропорционально связан с увеличением общего количества щелочей.

Такого рода аномалии наблюдаются и в трахнандезитах. Среди орогенных (и телеорогенных) магматических формаций Сихотэ-Алиня эти последние выделяются повышенным уровнем концентрации вольфрама. распределенного в них крайне неравномерно (см. табл. 1). На рис. 2 видно, что сначала накопление W в трахиандезитах пропорционально связано с ростом общей щелочности пород, а следовательно и исходных расплавов. По достижении определенного уровня щелочности $(K_2O+Na_2O \simeq$ ≈8 вес. %) в породах фиксируется аномальное накопление вольфрама, очевидно начинающего обособляться

в богатой калием и летучими (вода, бор) фазе. Весьма примечательно, что в комагматичных трахиандезитам монцонитах и сиенитах содержание вольфрама снижается до 2 г/т (¹). Возможно, при кристаллизации богатых щелочами и вольфрамом расплавов последний мог не только, обособляясь, накапливаться, но и выноситься за пределы магматической камеры. Предложенная модель принципиально важна для объяснения поведения W при

Распределение содержаний вольфрама в магматических породах Сихотэ-Алиня

1			Содерж. W, г/т	1 = 1	
Этап развития области	Магматический комплекс	Число анали- вов	M ± m *		Содерж. K ₂ O, вес. % (M ± m)
Платформен- ный	1. Щелочно-оливино-	110	$3,6\pm0,26$ (1,6—6,8)	1,4	2,3±0,27
	2. Оливиновые ба- зальты и толеиты	104	$1,7\pm0,15(0,4-3,2)$	0,7	1,2±0,25
Позднеороген- ный, телеоро- генный	плато 3. Трахиандезиты 4. Липариты, фельзиты, их туфы и	21 82	$3,9\pm0,41 (1,6-20)$ $2,5\pm0,17 (0,8-4,0)$	1,0 0,8	4,6±0,36 3,7±0,34
	ингимбриты 5. Андезиты, андези- то-базальты, анде-	140	2,3±0,47 (0,8-4,4)	0,8	1,9±0,17
	зито-дациты 6. Гранодиориты, би- отит-амфиболовые	308	2,06±0,18(0,4-6,0)	1,6	3,5±0,14
Геосинклиналь- ный	- P street, street	151	1,6±0,23(0,4—10)	1,46	1,2±0,35

^{*} В скобках — пределы колебаний.

глубинной кристаллизации расплавов в столбах большой радиальной протяженности (8).

Известково-щелочные андезиты и липариты по уровню накопления в них вольфрама аналогичны петрохимически близким к ним гранитоидам из различных структурно-тектонических зон Приморья. Отмечаемая, по предварительным данным, обогащенность кислых туфов и ингимбритов вольфрамом, возможно, указывает на высокую эксплозивность этого элемента.

Геосинклинальные базальтоиды (диабазы, базальтовые порфириты, их туфы), отдельные данные по которым уже приводились (°), средним уровнем содержания вольфрама не отличаются существенно от платформенных толеитов. Тем не менее, различия есть. Они заключаются в большем размахе предельных содержаний (0,4—10 г/т) и значительно возрастающей дисперсии W в инициальных базитах. Очевидно, со спилитизацией этих образований может быть связан как вынос (мобилизация), так и привнос данного элемента. Принципиально возможно перераспределение W и в базитах нижней коры при их гранитизации и амфиболитизации.

Таблица 2 Сопержание вольфрама в оливинах и пироксенах

					_			
№N п.п.	№ обр.	Минерал	W, μΓ/Γ	NºNº □.□.	№ обр.	Минерал	W , μr/r	
1 2	M-802 M-814	Оливин Пироксен Оливин Пироксен	1,2 3,5 2,8 2,8	3 4 5 6	М-800 Л-873 Л-228 Л-252 Л-1383	Оливин » Пироксен »	1,7 0,8 1,2—4,0(5) 1,0	

Примечание. №№ 1—3 — минералы нодулей из дайки щелочных базальтов района вольфрамового месторождения Восток-2 (Центральный Сихотэ-Алинь), № 4 — фаялит из оливиновых гранитов мыса Орлова (Южное Приморье) № 5 — эндоконтактовые сиениты, Синегорский интрузив (Западное Приморье), № 6 — габбро интрузива пади Николаевской, Дальнегорский район (Восточное Приморье).

Наконец, следует указать, что по опубликованным, пока еще не очень общирным данным, с переходом ко внутренним частям Тихоокеанского пояса содержание W в базальтоидах снижается. Это показано (2, 3) на примере неоген-четвертичных пород Камчатки, Гавайских островов и о. Таити.

Встает вопрос о том, действительно ли имеются глобально фиксируемые различия уровней содержания W в океанических и континентальных базальтах или во всех случаях определяющую роль при накоплении его играет петрохимический тип магм и, следовательно, механизм их формирования. Ответ могут дать лишь широкие и хорошо скоординированные исследования в пределах Тихоокеанского пояса и на внутриокеанических островах.

Изложенные геохимические данные указывают на необходимость критического пересмотра традиционно сложившихся представлений о вольфраме как сиалически-коровом элементе, типичном лишь для гранитоидных (палингенных) магм. Приводимые выше примеры исключительно высокой фиксации W в щелочных базальтах указывают на мантию и генерируемые в ней расплавы как на первоначальный источник для последующего геохимического цикла этого элемента.

Дальневосточный геологический институт Дальневосточного научного центра Академии наук СССР Владивосток

Поступило 20 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Б. Левашев, И. Н. Говоров и др., Геохимия, № 4 (1972). ² В. Г. Сахно, И. Н. Говоров и др., В кн. Вулканизм и глубины Земли, «Наука», 1971. ³ В. Г. Сахно, И. Н. Говоров и др., В кн. Магматизм, формации кристаллических пород и глубины Земли, 1, «Наука», 1972. ⁴ Ј. Noddack, W. Noddack, Zs. phys. Chem., A, 154, 207 (1931). ⁵ А. П. Виноградов, Э. Е. Вайнштейн, Л. И. Павленко, Геохимия, № 5 (1958). ⁶ Р. G. Јеffегу, Geochim. et cosmochim. acta, 16, 278 (1959). ⁷ Д. Х. Грин, А. Э. Рингвуд, Происхождение базальтовых магм. В кн. Петрология верхней мантии, М., 1968. ⁸ А. А. Кадик, Е. Б. Лебедев, Н. И. Хитаров, Вода в магматических расплавах, «Наука», 1971. ⁹ И. Н. Говоров, М. А. Мишкин и др., В кн. Вопросы геологии, геохимии и металлогении Северо-Западного сектора Тихоокеанского пояса, Владивосток, 1970.