УДК 541.20+541.651

ФИЗИЧЕСКАЯ ХИМИЯ

А. Е. ЛУЦКИЙ, А. И. МИТИЧКИН, Г. И. ШЕРЕМЕТЬЕВА

ГИБРИДИЗАЦИЯ ОРБИТАЛЕЙ И ПРОТОНОДОНОРНАЯ СПОСОБНОСТЬ ГРУППЫ X— Н В ВОДОРОДНОЙ СВЯЗИ

(Представлено академиком И. Я. Постовским 20 VII 1973)

Протонодонорная (п.д.) способность группы Х-Н в водородной связи (Z) – X – $H \cdot \cdot \cdot Y(Z')$ (Y – протоноакцептор, Z и Z' – остальные молекул) при разных X изменяется антибатно интегралам перекрывания $\int_{X-H} = \int \psi_{1sH} \cdot \psi_{\pi p \ \sigma(X)} \cdot d\tau \ (^1, \ ^2)$. Поскольку значение \int_{X-H} зависит от s-характера орбиталей $X \ (^3)$ следует ожидать наличия указанной зависимости и в случае того же X, но различной гибридизации его орбитали. участвующей в образовании о-связи и именно снижения п.д. способности в ряду $sp^3 > sp^2 > sp$. Между тем измерения $\Delta v(C-H)$ в тройных системах обнаружили снижение п.д. способности этой группы в противоположном ряду, а именно $sp>sp^2>sp^3$ (4). Однако в комплексах с $C-H\cdots Y$ -связью вследствие высокого значения \int_{C-H} (5), решающую роль играет не перекрывание электронных облаков $1s_{\rm H}$ и пр $\sigma(y)$ и перенос заряда (пропорциональный квадрату интеграла перекрывания $\int_{H \cdots Y} {6 \choose 5}$, а электростатическое и поляризационное взаимодействие (Z)X-H и Y(Z') $({7 \choose 7}, {8 \choose 5})$. Это подтверждается близостью даже в случае комплексов с ацетиленом угла СНУ к 180° (9), зависимостью значений $\Delta v (= C - H)$ (10), прочности и равновесного расстояния в комплексе (11) не только от протоноакцепторной (п.а.) способности, но и от дипольного момента Y(Z'). Очевидно, целесообразно проверить справедливость ожидаемого эффекта гибридизации орбиталей на соединениях с группой Х-Н с более низким значением ∫_{х-н} и отсюда с более заметным, чем в случае С—Н, вкладом в комплексообразование переноса заряда и перекрывания электронных облаков $1s_{\rm H}$ —пр $\sigma(y)$. В связи с изложенным были измерены и.-к. спектры на спектрофотометре UR-20 с призмой из LiF соединений, содержащих группы > NH и = NH, в области ν (N-H) и ν (N-D) α -метиламинопиридина $(MA\Pi)$, v(N-H) N-метил- α -пиридонимина $(N-M\Pi H)$ и 2-имино-3-метилбензтиазолина (ИМБТ). В табл. 1 и 2 сопоставлены данные измерения v_{max} чистых веществ, v_{max} , v_{l_2} и B растворов в CCl_4 при разных концентрациях (C), в диоксане, пиридине и диметилсуль ϕ оксиде, а также тройных систем в ССІ, с добавками разных количеств диметилсульфоксида и в интервале температур $25-55^\circ$ C; там же даны значения $\hat{K_{\rm p}}, -\Delta H, -\Delta F$ и $-\Delta S$ комплексообразования. Полученные значения для $\nu(N-H)$ N-МПИ и МАП в чистой жидкости заметно расходятся с приведенными в (12) как по числу полос (две, а не одна), так и по положению $v_{\rm max}$. В остальном наши данные для v_{max} и v_{d} для МАП и N-МПИ почти совпадают с (13, 14); для чистой жидкости МАП значение v_{max} полос совпадает с данными в вазелиновом масле (13).

Дублет полосы v(N-H) МАП в разбавленном растворе в CCl_4 (3450 и 3467 см⁻¹) отсутствует в диоксане и диметилсульфоксиде, где возможно образование комплексов состава $N-H\cdots O$. Он сохраняется и для v(N-D) (2567 и 2571 см⁻¹) при отношении v(N-H)/v(N-D)=1,34. В CCl_4 при больших C МАП, как и в чистой жидкости, дублет исчезает. Очевидно, расщепление высокочастотной полосы v(N-H) МАП не может быть

Донор протонов	$c_{ m Д}$. мол/л	$\frac{c_{\mathbf{H}}}{c_{\mathbf{A}}}$	Свободная v(N-H)				Связанная у(N-H)							
			[∨] max	V1/2	B·104	3	vmax.	V ₁ / ₂	B-104	g	Δν _{max}	К, л⋅моль-1	_∆ <i>H</i> , ккал. .мол_1	ΔS, θ. e.
	0,998		3450) 3467∫	53,5	0,61	39,2	3269	157	1,70	41,5	188			
	0,099		3450) 3467)	52,5	0,56	45,1	3266	130	0,39	12,8	192			
N -NHCH ₃ + (CH ₃) ₂ SO	0,005		3450) 3467∫	46,0	0,55	50,5	_				_			
	0,0035		3450 3467	39,6	0,55	53,1	-	_		_	_			
	0,0035	1:50	3450) 3467J	43,5	0,42	36,1	3366	110	0,95	35,8	92	2,07-0,95	4,95	15,1—15,
	0,005	1:10	3450) 3467}	41,5	0,38	40,0	3366	139	0,38	11,0	92			
NH CH ₃	3,333 1,666 0,444 0,126		3317 3320 3326 3326	1111	optobery of	=	3259 3263 —			=	58 57 —	-		
+ (CH ₃) ₂ SO N CH ₃	orac orac orac orac	1:20 1:10 1:8	3320 3322 3325	34 —	0,18	16,1	3296 3297 3299	46,5 —	0,25	15,0 —	24 25 26	0,11-0,06	3,39	14,7—16,

Примечание. Здесь и в табл. $2 \nu_{\text{max}}$ и $\nu_{1/2}$ в см $^{-1}$, B в л·мол $^{-1}$ ·см $^{-3}$.

связано с проявлением усиленного резонансом Ферми обертона $\delta(N-H)$ (15). Более вероятно предположение, что при приближении атома H группы N-H к азоту кольца при вращении $NHCH_3$ имеет место значительное снижение скорости вращения, что равносильно эффекту на колебание слабой внутримолекулярной водородной связи $N-H\cdots N$ (16).

 Π ри более высоких C растворов в CCl4 МАП и N-МПИ, кроме дублета, наблюдается широкая и интенсивная полоса, максимум которой почти совпадает с низкочастотной полосой в чистой жидкости. Значение В этой полосы с ростом C возрастает в гораздо большей степени, чем дублета. Полоса эта связана с колебаниями v(N-H)_{связ} в комплексах, образующихся при автоассоциации молекул МАП и N-МПИ. Значительное $\Delta v =$ $=\bar{\mathbf{v}}(\mathbf{N}-\mathbf{H})_{\text{дубл}}-\mathbf{v}(\mathbf{N}-\mathbf{H})_{\text{связ}}$ в случае молекул МАП при заметном его снижении N-МПИ, как и необходимость более высокого C для прояв $v(N-H)_{cbr3}$ ления полосы у последнего, может быть объяснено образованием при автоассоциации межмолекулярных комплексов $N-H\cdots N$ с азотом пиридинового кольца в качестве протоноакцептора. Это подтверждается и близостью для растворов МАП значений Δv для двух полос в чистой жидкости (160 см⁻¹) и Δν дублета в CCl₄ и в растворе C₅H₅N (141—158 см⁻¹). Приведенное выше свидетельствует и о том, что высокочастотная полоса в чистой жидкости N-МПИ является полосой не v(=N-H) связанного (12), а $\nu (=N-H)$ свободного.

В растворах в диоксане и диметилсульфоксиде, где возможно образование комплексов с N—H···O-связью, у всех изученных соединений имеет

olo:	B.104		1,29	0,54		1,72
	V1/8		154	77		116
	"max		3340 пл.	3294 3313 пл.		3255
1.0	B.10*		3,80	0,73		2,39
CH ₃	w1/18		103	36,6		70,07
	*max		3327	3290	701	3265
0	B.10*		2,01	0,33	15.19	1,38
CH2-CH2	V1/8		73,0	19,2	·	37,2
0	*max		3396	3316		3318
A Constitution of the Cons	B.104		0,56	0,14		0,36
, CCI,	٧١/ء		39,6	24		13,6
	'max		3450\ 3467}	3326		3357
Чистое вещество Утах			3275; 3435	3257; 3310		3250
Вещество	Вещество		N-NHCH _s	HN	CH _s CH _s	C=NH

место заметное смещение сравнительно с раствором низкой концентрации в CCl_4 полосы v(N-H) к меньшим частотам. В растворе в пиридине поглощение в области v(N-H) также заметно смещено в область меньших частот; при этом проявляются две полосы: низкочастотная с v_{max} при несколько больших значениях, чем такая же полоса в чистой жидкости, и высокочастотная в случае МАП и N-МПИ в виде плеча с разницей между ними 31 и 19 см⁻¹; наличие высокочастотной полосы у МАП и N-МПИ связано, по-видимому, с образованием комплексов с участием π -электронов пиридинового кольна.

Как видно, значения $\Delta v_{\text{max}} = v \, (N-H)_{\text{счоб}} - v \, (N-H)_{\text{связ}}$ во всех изученных двойных и тройных системах, а также в чистой жидкости, резко снижаются при переходе от соединения с - NHCH3 (МАП) к соединениям с = NH-группой (N-МПИ и ИМБТ). Заметно снижаются и ширина и интенсивность v(N-H) связанного. Если сравнить между собою соединения МАП и N-МПИ с близкой остальной частью молекул, но различающиеся разной гибридизацией орбиталей азота группы N-H, то окажется, что при sp³-гибридизации п.д. способность этой группы возрастает сравнительно с sp^{3} -гибридизированным азотом, как правило, судя по соотношению Δv_{max} , в 3-4 раза. В отличие от данных для эффекта гибридизации в случае группы С-Н и в согласии с ожидаемым из соотношения значений $floor_{
m X-H}$ протонодонорная способность группы m N-H растет в ряду гибридизации $sp^3 > sp^2$. Это подтверждается и данными для $K_{
m p}$ и $-\Delta H$ реакции комплексообразования молекул МАП и N-МПИ с (СН₃)₂SO (табл. 1). При близких $-\Delta S$ значение $(K_{\rm p})_{\scriptscriptstyle T}$ на порядок, а ΔH почти в 1,5 раза больше для МАП, чем для N-МПИ.

Харьковский политехнический институт им. В. И. Ленина

Поступило 9 VII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Е. Луцкий, Теоретич. и эксп. хим., 1, 815 (1965). ² А. Е. Луцкий, Т. Н. Марченко, там же, 8, № 6 (1973). ³ С. Сои Ison, Valence, Oxford, 1961, p. 210; М. Randic, Z. Maksic, Chem. Rev., 72, 43 (1972). ⁴ А. Allerhand, P. Schleyer, J. Am. Chem. Soc., 85, 1715 (1963). ⁵ R. Mulliken, J. Am. Chem. Soc., 72, 4493 (1950). ⁶ F. Duijeneveldt, J. Murrell, J. Chem. Phys., 46, 1759 (1967). ⁷ P. Olympia, Chem. Phys. Letters, 5, 593 (1970). ⁸ F. Duijeneveldt, J. Chem. Phys., 49, 1424 (1968). ⁹ P. Kollman, J. Am. Chem. Soc., 94, 1837 (1972). ¹⁰ А. В. Иогансен, Г. А. Куркчи, Оптика и спектроскопия, 13, 480 (1962). ¹¹ А. Goel, С. N. R. Rao, Trans. Farad. Soc., 67, 2828 (1971). ¹² Д. Н. Шигорин, Я. Л. Данюшевский, Я. Л. Гольцфарб, Изв. АН СССР, ОХН, 1956, 120. ¹³ А. Ф. Пожарский, А. А. Константинченко, Хим. гетероцикич. соед., № 3, 363 (1973). ¹⁴ R. Soda, Bull. Chem. Soc. Japan, 30, 499 (1957); J. Goulden, J. Chem. Soc., 1952, 2939; R. Werner, J. Chem. Soc., 1952, 2911. ¹⁵ Л. Беллами, Инфракрасные спектры сложных молекул, ИЛ, 1963, 368. ¹⁶ А. Е. Луцкий, А. К. Кульчицкая, Е. М. Обухова, ЖОХ, 36, 1570 (1966).