УДК 548.736.6

КРИСТАЛЛОГРАФИЯ

В. И. ЛЮТИН, Э. А. КУЗЬМИН, В. В. ИЛЮХИН, академик Н. В. БЕЛОВ

О КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ СМЕШАННОГО ОРТОГЕРМАНАТА ЦИНКА И МАРГАНЦА ZnMnGeO.

Объектом исследования был один из продуктов гидротермальной кристаллизации в системе $\text{Li}_2\text{O}-\text{ZnO}-\text{Si}(\text{Ge})\text{O}_2-\text{H}_2\text{O}$ (при небольшой примеси Мп, первоначально в роли активатора), монокристальные обломки которого были нам переданы Б. Н. Литвиным. Параметры ромбической ячейки: $a=10.76\pm0.04$, $b=6.30\pm0.03$, $c=5.03\pm0.03$ Å, федоровская группа (ф.г.) Pnma или $Pn2_1a$.

Диаграмма фазовых равновесий в системе $\text{Li}_2\text{O}-\text{ZnO}-\text{SiO}_2$ (точнее $\text{Li}_4\text{SiO}_4-\text{Zn}_2\text{SiO}_4$) достаточно подробно охарактеризована в (¹); для 8 из 10 фиксированных индивидуальных соединений все основные рентгеновские сведения даны в табл. 1. Близкие размеры ячеек и одинаковая симметрия указывали на возможность отнесения исследуемого нами соединения к фазе γ^I или β^I (по (¹)), т. е. либо к цинкогерманату $\text{Li}-\text{Li}_2\text{ZnGe}(\text{Si})\text{O}_4$ (отношение $\text{Li}_4\text{SiO}_4:\text{Zn}_2\text{SiO}_4=1:1-\beta^I$ -фаза), либо к фазам сложного состава с вакансиями в катионной части: $\square_2\text{Li}_4\text{Zn}_6\text{Si}_4\text{O}_{16}-\bigcirc_8\text{Li}_8$ (Zn_2Li_2) Si_4O_{16} (здесь \square и \bigcirc означает вакансии Li по (¹)).

В (¹) п ортосиликат (германат) лития, и две последних фазы отнесены к структурному типу Li₂PO₄ с возможным двойным гетеровалентным заме-

Таблица 1 Литий-цинковые силикаты. Кристаллографические данные

Фава	Симметрия	a, Å	b, Å	c, A	Пространствен- ная группа	Плот- ность
γ ¹¹ (25% Zn ₂ SiO ₄ , 700° C)	Ромбическая	6,42	10,76	5,12	$Pmnb - D_{2h}^{16}$	
γ ¹ (25% Zn ₂ SiO ₄ , 25° C)	»	6,36	10,72	5,07		3,62
γ° (25% Zn ₂ SiO ₄ , 25° C)	Псевдо-ромбиче- ская (моноклин- ная)	6,36	5,40	5,06		3,35
β ¹¹ (50% Zn ₂ SiO ₄ , 700° C)	Ромбическая	6,42	5,40	5,04	$Pmn2_1 - C_{2v}^7$	
β ¹ (50% Zn ₂ SiO ₄ , 25° C)	3	6.32	10,68	4,98		3,37
c (62% Zn ₂ SiO ₄ , 25° C)	Псевдо-ромбиче-	13,16	10,60	5,06		3,64
Li ₄ SiO ₄ (25° C)	Моноклинная β = 89.5°	5,14	6,10	5,30	$P2_1/m - C_{2h}^2$	
Li ₄ SiO ₄ (800° C)	Псевдо-ромбиче- ская	5,30	6,32	5,45		

пцением по схеме ${\rm Li_2(Li+P)}
ightharpoonup {\rm Li_2(Zn+Si)}$. Помимо этого гипотетического допущения интерес к указанному соединению подогревался и возможностью последующего сопоставления структур ${\rm Li-rep}$ маната с натриевой фазой аналогичного состава (фазой $D{\rm -Na_2ZnGeO_4}$), расшифрованной нами ранее (²). Экспериментальный материал составили 300 ненулевых отражений h0l-h6l и hk0 (${\rm Mo}K_{\alpha}$ -излучение, рентгенгониометр Вейсенберга,

2''-шкала марок почернения, $\max \frac{\sin \theta}{\lambda} = 0.95$). Поскольку в трехмерної

функции Патерсона P(uvw) (рис. 1) не удалось отыскать ромбы, отвечающие плоскости m, то мы сочли возможным на первом этапе вести анализ в рамках ф.г. $Pn2_1a$.

Раскрытие реальной функции Патерсона осуществлялось по алгоритму (3) согласно схеме, апробированной в (4). Для отыскания вершин ромбов пиков, отвечающих трем элементам симметрии 2-го порядка, были построены (по (3)) функции минимализации 4-го ранга — M_4 =

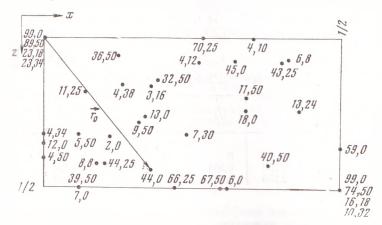


Рис. 1. Функция Патерсона P(uvw) в точечном виде. Первая из двух цифр указывает вес пика в относительных единицах, вторая его высоту в $^1/_{100}$ оси ячейки b. Показан вектор сдвига из начальной звезды, использованный для построения функций минимализации $M_2(\mathbf{r}_0)$

 $=M_4\{[M_2(\mathbf{r}_i)][M_2(\mathbf{r}_0)]\}$, где \mathbf{r}_0 — исходный вектор сдвига из начальной звезды, а \mathbf{r}_i — векторы, связанные с \mathbf{r}_0 по (3). В конкретном случае нашего соединения за вектор \mathbf{r}_0 был выбран вектор до максимума «44» (18, 0, 44). Согласование выделенных ромбов выполнено в соответствии с рецептами (3),

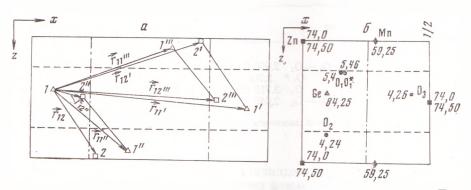


Рис. 2. a — выделяющий многоугольник, приведший к решению структуры. Показаны векторы сдвига для построения заключительной функции M_8 ; δ — атомы структуры, локализованные на M_8 -функции

после чего был фиксирован базисный отрезок 1 2, который вместе с размноженными посредством элементов симметрии ф.г. $Pn2_1a$ (12, 1'2', 1"2", 1"'2"') составил выделяющий многоугольник (рис. 2a). На результирующей функции минимализации $M_8[\mathbf{r}_{11},\mathbf{r}_{11'},\ldots,\mathbf{r}_{12''}]$ найдены 7 максимумов в независимой части ячейки — они были приняты за атомы структуры (рис. 2b), и их координаты послужили основой для синтеза $\rho(xyz)$. На этом этапе рассеивающая способность всех атомов принималась одинаковой. На первом $\rho_1(xyz)$ — оказалось возможным провести дифференциацию атомов — три максимума были приняты за более тяжелые атомы, остальные 4—

за легкие. Подобное распределение не соответствовало ни формуле $\text{Li}_2\text{ZnSiO}_4$, ни тем более промежуточным составам $\text{Li}_4\text{Zn}_6\text{Si}_4\text{O}_{16}$ — $-\text{Li}_8(\text{Zn}_2\text{Li}_2)\,\text{Si}_4\text{O}_{16}$. В связи с сомнениями в формулах был проведен качественный химический анализ исследуемых кристаллов (В. В. Лидер), в результате которого обнаружены Zn, Ge и Mn, и в следующий синтез электронной плотности были введены f-кривые нейтральных атомов Mn и O, что привело к дальнейшей дифференциации высот пиков на картах $\rho_2(xyz)$. Серия разностных синтезов позволила с большой уверенностью отождествить сильные максимумы с Zn, Ge и Mn, а также уточнить позиционные параметры структуры при $R_{\Phi} \approx 0.20$. Переход (на этой стадии) к голоэдрии

Таблица 2 ZnMnGeO₄. Координаты атомов

ATOM	x/a	y/b	z/c	Атом	x/a	y/b	z/c
Zn	0	0	0	$\begin{bmatrix} O_1 \\ O_2 \\ O_3 \end{bmatrix}$	0,163	0,029	0,276
Mn	0,280	0,250	0,988		0,091	0,250	0,779
Ge	0,096	0,250	0,433		0,447	0,250	0,219

не увеличил существенно коэффициент расходимости структуры (в пределах $\sim 23\,\%$), и поэтому дальнейшее уточнение структуры велось в рамках ф.г. Pnma, метод наименьших квадратов снизил R до 0,096, а с учетом индивидуальных тепловых поправок — до 0,078. Уточнение кратности положений μ подтвердило распределение катионов Zn, Ge, Mn по соответствующим позициям, вытекающим из синтезов электронной плотности.

Заключительные координаты сведены в табл. 2, а отвечающие им межатомные расстояния — в табл. 3. Таким образом, прямая расшифровка кри-

Таблица 3 ZnMnGeO₄. Межатомные расстояния

	раэдр	Zn-октаэдр		Мп-октаэдр		
$\begin{array}{c} \text{Ge} - \text{O}_{1} \\ \text{O}_{2} \\ \text{O}_{3} \end{array}$	1,759 (2) 1,746 1,779	$\begin{array}{cccc} O_1 - O_2 & 2,996 & (2) \\ O_1 * & 2,788 \\ O_3 & 2,719 & (2) \\ O_2 - O_3 & 2,949 \end{array}$	$\begin{bmatrix} Zn - O_1 \\ O_2 \\ O_3 * \end{bmatrix}$	2,252 (2) 2,167 (2) 2,195 (2)	Mn — O ₁ * O ₁ O ₂ O ₃	2,155 (2) 2,371 (2) 2,296 2,155

Примечание: Звездочкой помечены атомы, связанные с базисными элементами симметрии.

сталлической структуры соединения привела (в рамках ф.г. Pnma) к непредусмотренной (в изучаемой системе) формуле $ZnMnGeO_4$ при полном отсутствии легкого катиона Li. Соединение кристаллизуется в структурном типе оливина, также не встречавшемся в системе $A_2O-ZnO-GeO_2(SiO_2)-H_2O$ (°, °). Оба переходных катиона и Zn, и Mn локализуются в октаэдрах; менее крупный Ge-B тетраэдре. В характерной оливиновой ленте Zn-октаэдры составляют стержень ленты, а Mn-октаэдр располагаются на зубцах, и структурный мотив полностью повторяет структуру тефроита — глаукохроита, но никак не Li_3PO_4 , как то было принято в (¹).

Ретроспективный взгляд (в свете проведенной расшифровки) на диаграмму фазовых равновесий (¹) и табл. 1 позволяет сделать два замечания: при более пристальном изучении индивидуальности фаз в системе $A_2O-ZnO-SiO_2(GeO_2)$ может оказаться, что γ^{II} -, γ^{I} -, β^{I} -фазы не что иное,

как видоизмененный Zn-оливин, причем предполагаемое вхождение Li в структуру не имеет места, и, как следствие, лишены основания предположения о тождестве структур этих фаз со структурой Li₃PO₄; несомненно нуждается в более строгом рассмотрении и вопрос о химических формулах этих фаз.

Институт кристаллографии им. А. В. Шубникова Академии наук СССР Москва

Поступило 8 VIII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. R. West, F. P. Glasser, J. Material Sci., 5, 557 (1970). ² Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, Кристаллография, 13, 976 (1968). ³ Э. А. Кузьмин, В. П. Головачев и др., Кристаллография, 18, 54 (1973). ⁴ В. И. Лютин, Э. А. Кузьмин и др., Сборн. Структура и свойства кристаллов, Владимир, 1973. ⁵ Б. Н. Литвин, Автореф. кандидатской диссертации, М., 1964. ⁶ И. П. Кузьмина, Автореф. кандидатской диссертации, М., 1966.