УДК 539.26

ФИЗИЧЕСКАЯ ХИМИЯ

Академик А. В. НИКОЛАЕВ, А. П. САДОВСКИЙ, Л. Н. МАЗАЛОВ, Г. Н. ДОЛЕНКО, Е. С. ГЛУСКИН

РЕНТГЕНОСПЕКТРАЛЬНОЕ ИЗУЧЕНИЕ ЭЛЕКТРОННОЙ СТРУКТУРЫ МОЛЕКУЛЫ SO₂

В предыдущих работах (1, 2) нами изучалась электронная структура SO₂ по $SK_{\mathfrak{s}}$ -флуоресцентному спектру. Из анализа спектра определялись сравнительные вклады Зр-орбиталей в м.о и делалось предположение о значительной примеси 3d-орбиталей серы в уровень a_2 . К подобному заключению пришли и авторы работы (3), предполагая значительные вклады 3d-орбиталей в верхние валентные уровни a_2 п b_2 на основании полученных фотоэлектронных спектров молекулы. Вообще вопрос об участии 3d-орбиталей серы в химической связи в ее соединениях в настоящее время стад довольно актуальным. Если для высокосимметричных соединений типа SO_4^{2-} и SF_6 участие 3d-орбиталей предполагалось сравнительно давно (4 , 5) и было доказано рентгеноспектральными данными (6-8), то для молекул невысокої симметрии типа SO_2 этот вопрос остается открытым. Так, в точных расчетах $\binom{9-11}{2}$ приводятся результаты, полученные с учетом и без учета 3d-орбиталей серы. Эти расчеты удовлетворительно устанавливают порядок молекулярных уровней, но не решают вопрос об их строении. К пастоящему времени известны лишь две попытки оценить вклады а.о. в м.о., пользуясь приближенными расчетными методами, МВГ (1) и ПДДП (12) *.

Целью настоящей работы является получение полной информации о строении валентных уровней SO_2 из анализа полного набора рентгеновских спектров молекулы и, в частности, однозначное решение вопроса

о вкладе 3d-орбиталей серы в химическую связь.

На рентгеновском спектрометре «Стеарат» получены флуоресцептные K_{α} , K_{β} и L-спектры серы и K-спектры кислорода в замороженном газе SO_2 . Газ через натекатель подавался на вторичный анод рентгеновской трубки, намораживаясь на алюминиевую или иридиевую подложки, находящиеся при температуре жидкого азота. Рентгеноспектральное исследование подложек после разморожения образцов показало отсутствие сколько-пибудь заметных продуктов взаимодействия SO_2 с подложками. K-спектры серы возбуждались серебряным анодом при режиме работы рентгеновской трубки U=8 кв, I=0,4 а и анализировались кристаллом кварца (плоскость ромбоздра). L-спектры серы возбуждались CK-излучением при режиме U=3 кв, I=1,0 а и анализировались псевдокристаллом стеарата бария. K-спектры кислорода возбуждались CuL-излучением при режиме U=6 кв, I=0,8 а и анализировались кристаллом KAP.

На рис. 1 представлены полученные флуоресцентные SK_{β} -, SL- п OK-спектры в SO_2 . В K-спектре серы виден широкий и интенсивный максимум N, с его коротковолновой стороны имеется слабо выраженный максимум O и четкий пик P, а далее слабые максимумы Q и R, которые относятся нами к коротковолновым сателлитам. С длинноволновой стороны основного максимума N видны максимумы L и M и далее слабые широкие пики F и K. В L-спектре серы наблюдаются два интенсивных максимума V и W, с длинноволновой стороны максимума V лежит паплыв T и далее слабый широкий пик S. Происхождение наплыва T объяспяется, по-видимому, наличием длинноволнового сателлита, аналогичного встречающемуся в L-спектрах хлора (13). В K-спектре кислорода самым интенсивным являет-

^{*} Значения c^2_{ij} , полученные из расчета (12), были любезно предоставлены нам С. П. Долиным.

ся максимум D. С коротковолновой стороны от него расположен интенсивный максимум E, вызванный аномальным отражением от используемого кристалла KAP (14), а с длинноволновой — максимум C и далее слабые, показанные при десятикратном увеличении наплывы A и B.

Все спектры приводятся к единой энергетической шкале следующим образом. $K_{\mathfrak{F}}$ и L-спектры серы сопоставляются путем вычитания энергии

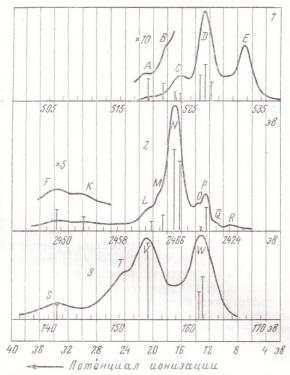


Рис. 1. OK-(1), SK_{β} -(2) и SL-(3) спектры SO_2 . Спектры привязаны друг к другу в энергетической шкале относительно уровня вакуума. Для каждого спектра приведена шкала абсолютных энергий, соответствующая рентгеновским переходам

 K_{α} -линий (2307,9 эв) из соответствующих энергий K_{β} -спектра, а затем, используя рентгеноэлектронные данные о потенциалах ионизации внутренних уровней SO_2 (15) ($\Pi H_{S_{1p}} = 174.8$ эв, $\Pi H_{O_1s} = 539.6$ эв), сопоставляем спектры серы и кислорода в энергетической шкале относительно уровня вакуума, соответствующей ΠH валентных электронов молекулы.

Все полученные спектры разлагались на отдельные линии дисперсионной формы па ЭВМ «Минск-32» по программе, составленной в Вычислительном центре Института неорганической химии СО АН СССР (16). Данные по положению линий разложения и их интенсивности приведены в табл. 1. Приведенные интенсивности нормированы к наибольшему максимуму соответствующего спектра *.

Возможна идентификация полученных рентгеновских спектров при использовании только групповых свойств молекулы SO_2 , принадлежащей к группе симметрии $C_{2\nu}$, и дипольных правил отбора. Всего в SO_2 имеется 18 валентных электронов, которые должны разместиться на девяти м.о. Информация, полученная из трех «привязанных» рентгеновских спектров, суммируется в табл. 1.

^{*} Линии разложения обладают следующими ширинами: в SK_{β} -спектре — 1,5 эв, в SL-спектре — 3,0 эв, в OK-спектре — 1,2 эв. Исключение составляют линии, образующие слабые максимумы F и K в SK_{β} -спектре и S в SL-спектре и обладающие несколько большими ширинами.

В таблице приводятся III, соответствующие линиям разложения спектров, и нормированные интенсивности линий разложения, соответствующие вкладам а.о. в м.о. ($I \sim c_{ij}^2$). Истинная симметрия получена в результате согласования с данными лучших расчетов (10 , 11).

Самый глубокий уровень проявляется в виде слабых широких максимумов в L- и K_{β} -спектрах. Отсюда следует, что в наших спектрах не проявляется та а.о., которая вносит основной вклад в этот уровень. Такой а.о.

Таблица 1 Идентификация рентгеновских спектров на основании групповых свойств молекулы

ПИ, эв				Вклады А	ОвМО	Предполагае-	Истинная		
SK_{β}	SL	O K	38	3p	3 <i>d</i>	2p	мая симмет- рия уровня	симметрия	
12,3 13,3 16,1 16,9 18,6 20,3 29,8 33,5	13,0 13,5 20,9 33,6	11,7 12,6 13,3 15,7 16,9 18,6 20,6	0,9	0,17 0,02 0,55 0,60 0,13 0,06 0,02 0,03	0.5 0,4	0,32 0,62 0,46 0,17 0,17 0,03 0,04	$\begin{array}{c} a_1, \ b_1, \ b_2 \\ a_2 \\ b_2 \\ a_1, \ b_1 \\ a_1, \ b_1 \\ b_2 \\ a_1 \\ b_2 \\ a_1 \end{array}$	$egin{array}{c} 4a_1 \\ 1a_2 \\ 3b_2 \\ 1b_4 \\ 3a_4 \\ 2b_2 \\ 2a_1 \\ 1b_4 \\ 1a_4 \end{array}$	

может быть лишь $2s_o$. Учитывая наибольшую вероятность проявления этого уровня в SL-спектре в основном из-за 3s-заселенности, необходимо отнести его к симметрии а₁. На осповании аналогичных рассуждений, два последующих уровня идентифицируются как b_2 и a_4 соответственно. Следующий уровень проявляется в SK_{6} - и OK-спектрах, но довольно слабо, поэтому в его составе есть 2so-орбитали и, следовательно, он проявляется в OK-спектре из-за $2p_{\sigma}$ -орбиталей. Учитывая малую вероятность того, что уровни одной симметрии будут расположены рядом, этот уровень необходимо отнести к симметрии b_2 . Далее следует пара уровней, которые не разрешаются ни в $SK_{\mathfrak{g}}$ -спектре (широкий интенсивный максимум N), ни в OK(максимум C). С учетом того, что ближайшим к ним уровнем является b_2 , эти неразрешенные уровни надо отнести к симметрии a_1 и b_4 . Тогда следуюший уровень, проявляющийся в SL-спектре из-за 3d-орбиталей, а также в OK- и SK_b -спектрах имеет симметрию b_2 . Вышележащий уровень совсем не проявляется в SK_6 -спектре, поэтому его необходимо отнести к симметрии a_2 . Так как уровень a_2 не должен обладать вкладом от 3s-орбиталей серы, то в SL-спектре он проявляется вследствие 3d-заселенности. Индентификация

Таблица 2 Потенциалы ионизации и одноэлектронные энергии связи для валептных уровней в SO₂

М. о.	Эксперимент	альные ПИ, эв	Одноэлектронные энергии связи						
	данная работа	из фото- электронных спектров (11)	по (9)	по (10)	по (11)	по (12)			
$4a_1$ $1a_2$ $3b_2$ $1b_1$ $3a_1$ $2b_2$ $2a_1$ $1b_2$ $1a_1$	11,7—12,3 12,6—13,0 13,3—13,5 15,7—16,1 16,9 18,6—18,8 20,3—20,9 29,8 33,5—33,6	12,3 13,0 13,2 16,0 (16,7)	12,0 13,0 13,5 17,7 18,4 17,8 22,9 38,5 41,3	13,4 14,0 14,7 18,0 18,9 14,0 23,6 38,2 41,0	12,7 13,3 14,0 17,6 18,4 18,4 23,3 37,8 40,8	14,4 15,1 15,1 16,3 16,5 19,2 24,9 38,8 39,7			

самого верхнего уровня, проявляющегося в SK_{β} - и OK-спектрах, неопреде-

ленна. Он может обладать любой из симметрии, a_1, b_1, b_2 .

Таким образом, удалось получить обширную информацию об электронной структуре валентной оболочки молекулы без привлечения расчетных данных. С привлечением последних можно лишь уточнить симметрию некоторых молекулярных уровней. В табл. 2 представлены ПИ валентных электронов в SO₂ и соответствующие им одноэлектронные энергии связи, определенные различными методами. Из данных табл. 2 видно хорошее соотвстствие между энергетикой уровней, полученной из лучших расчетов

Таблица 3 Сравцение c_{ij}^2 , полученных из рецтгеновских спектров и приближенных расчетов

М. о.	с _{іј} ² для а.о. серы									^с ij ² для а.о. кислорода		
	3s			3p			3 <i>d</i>		27)			
	данная работа	(i)	(12)	данная работа	(1)	(12)	данная работа	(12)	дапная работа	(1)	(12)	
$egin{array}{c} 4a_1 \ 1a_2 \ 3b_2 \ 1b_1 \ 3a_1 \ 2b_2 \ 2a_1 \ \end{array}$	0,9	0,0 0,0 0,7	0,1	0,17 0,02 0,55 0,60 0,13 0,06	0,22 0,00 0,95 0,43 0,26 0,42	0,71 0,41 0,24 0,05 0,48 0,01	0,5	0,2 0,2 0,1	0,32 0,62 0,46 0,17 0,17 0,03 0.04	0,48 0,49 0,50 0,06 0,18 0,26 0,07	0,23 0,50 0,32 0,45 0,44 0,26 0,09	
$1b_2 \\ 1a_1$	0,3	1,0	0,4	0,02	0,09	0,01		0,2	0,04	0,00	0,01	

(10, 11) и фотоэлектронных данных [3], и результатами настоящей работы, полученными из рентгеновских спектров.

В табл. 3 сравниваются квадраты коэффициентов c_{ij}^2 при а.о., входящих в м.о., нормированные к наибольшему максимуму соответствующего рентгеновского спектра *, определенные в настоящей работе экспериментально и рассчитанные в (1 , 12). Расчет (1) проводится без учета $3d_s$ -орбиталей, но, тем не менее, определенные им $2p_{o}$ - и $3p_{s}$ -заселенности удовлетворительно согласуются с экспериментальными. $c_{ij}^{\ 2}$, определенные из расчета $(^{12})$, неплохо сходятся с экспериментальными значениями только для 3s- и 3d-орбиталей серы. З d_s -орбитали, как следует из рептгеновских спектров, вносят существенный вклад в $1a_2$ и $3b_2$ уровни.

Ипститут неорганической химпи Сибирского отделения Академии наук СССР Новосибирск

Поступило 2 IV 1973

цитированная литература

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. Н. Мазалов, В. М. Бертенёвидр., ЖСХ, 13, 855 (1972). ² Л. Н. Мазалов, А. В. Николаев пдр., Изв. СО АН СССР, № 14, сер. хим., № 4, в. 6, 3 (1971). ³ Л. Н. D. Eland, С. J. Dauby, J. Mass Spectr. Ion. Phys., 1, 111 (1968). ⁴ Н. Н. Jaffe, J. Phys. Chem., 58, 185 (1954). ⁵ Ф. Коттон, Д. Уилкинсон, Современная неорганическая химия, М., 1969, ч. 2. ⁶ D. S. Urch, J. Chem. Soc. A, 1969, 3026. ⁷ В. И. Нефедов, ЖСХ, 13, 332 (1972). ⁸ R. E. Lavilla, J. Chem. Phys., 57, 899 (1972). ⁹ I. H. Hillier, V. R. Saunders, Trans. Farad. Soc., 66, 1544 (1970). ¹⁰ S. Rothenberg, P. E. Shaefer, J. Chem. Phys., 53, 3014 (1970). ¹¹ R. Roos, P. Siegbahn, Theor. chim. acta, 21, 368 (1971). ¹² С. П. Долин, М. Е. Дяткина, ЖСХ, 13, 901 (1972). ¹³ F. E. Lavilla, R. D. Deslatters, Coll. int. CNRS, № 196, 160 (1971). ¹⁴ R. J. Liefeld, S. Haurely et al., Advances in X-Ray, 13, 373 (1970). ¹⁵ K. Siegbahn et al., ESCA Applied to Free Molecules, Amsterdam, 1969. ¹⁶ Л. Н. Мазалов, А. П. Садовский и др., ЖСХ, 13, 854 (1972). ский и др., ЖСХ, 13, 854 (1972).

^{*} Для нормировки расчетных c^2 , нужно строить соответствующие рентгеновские спектры, используя расчетные значения энергии и c^2_{ij} , а также экспериментальные нирины линий в качестве параметров.