УДК 553.833

ГЕОХИМИЯ

в. м. ольшевский

О НАХОДКЕ АКВАМАРИНА В ЗОЛОТОКВАРЦЕВЫХ ЖИЛАХ КАРАЛЬВЕЕМСКОГО МЕСТОРОЖДЕНИЯ (ЗАПАДНАЯ ЧУКОТКА)

(Представлено академиком Н. А. Шило 28 VI 1972)

Автором в 1970 г. обнаружен акцессорный голубой берилл в рудах Каральвеемского месторождения.

Это, по-видимому, первая находка берилла в рудах мезотермального месторождения золота. В наиболее полной сводке по минеральному составу золоторудных месторождений Н. В. Петровской, Р. М. Константинова и С. В. Сиротинской (1) берилл не указывается.

Каральвеемское месторождение располагается в пределах Кэпэрвеемского горста Анюйской складчатой зоны Чукотской мезозойской складчатой области. Горст сложен смятыми в крутые складки песчано-сланцевыми триасовыми отложениями с силлами диабазов.

Рудолокализующими структурами явились лестничные разрывные и продольные сколовые трещины, наиболее выдержанные в диабазах. Рудные жилы — четковидные, плитообразные.

На основании изучения вещественного состава руд месторождение относится нами к арсенопиритовому минеральному типу золото-кварцевой формации. Золотоносные жилы сложены на 95—97% молочно-белым кварцем с редкими гнездами арсенопирита и шеелита. Мелкозернистый серый кварц с сульфидами и самородным золотом выполняет внутрирудные трещины, субпараллельные зальбандам, в раннем кварце.

Берилл образует ничтожную примесь в рудах и встречен на нескольких горизонтах месторождения. В рудных телах были обнаружены маломощные (не более 10 мм) редкие полосовидные скопления голубого берилла в ассоциации с мусковитом, прослеженные в жилах на десятки метров по простиранию. На зальбандах берилловых полосовидных скоплений сохранились зеркала скольжения со штрихами, бороздами и растертыми мусковитом и бериллом. Иногда берилл корродируется минералами продуктивной минеральной ассоциации (золото и поздние сульфиды).

Берилл представлен одиночными длиннопризматическими кристаллами, нередко соединенными в друзы и сплошные шестоватые агрегаты ярко-бирюзового цвета. Размер кристаллов по L_6 ог 0,1 до 1,0 мм. Кристаллы с ясно выраженной пинакоидальной отдельностью представляют собой комбинацию гексагональной призмы $\{1010\}$ и пинакоида $\{0001\}$.

Таблица 1

Межплоскостные расстояния берилла							
N: 1		N 2		JN 1		N 2	
1	d/n_{α} , Å	I	d/n_{α} , \hat{A}	1	d/n_{α} , Å	I	d/n_{lpha} , Å
5 5 10 4 40 5	4,5776 3,9759 3,2526 3,0238 2,8711 2,5286	8 8 10 8 10 8	4,576 3.974 3.238 3,000 2.874 2.515	3 4 5 4 1 3	2,2869 2,1659 1,74647 1,51875 1,36685 1,27986	7 8 8 8 8	2,291 2,146 1,737 1,515 1,366 1,276

Примечание: Условия съемки для \mathbb{N} 1: трубка БСВ-9; Си-антикатод; 4,1; 2; 0,25 мм; 30 ма; 30 кв; Ni-фильтр, аналитик — П. Русило, г. Магадан; \mathbb{N} 2 — берилл по В. И. Ми-хееву [4].

В кристаллах обнаруживаются газовые включения, что может свидетель-

ствовать о иневматолитовом происхождении берилла (2).

Судя по условиям локализации, берилл образовался до кристаллизации продуктивной минеральной ассоциации. Можно предполагать принадлежность бериллиевой минерализации к другому генетическому минеральному сообществу, что соответствует представлениям Н. В. Петровской о возможном совмещении разнотипных эндогенных минеральных образований

В шлифах минерал отчетливо плеохроирует: $n_e > n_0$, по n_e — бледно-голубой, по n_0 — бесцветный. Угасание часто секториальное, n_0 = 1.591, n_o = =1.586 (в белом свете), $n_0-n_e=0.005$. Рентгенограмма порошка минерала близка рентгенограмме берилла (табл. 1).

Химический анализ минерала обнаруживает его сходство с бериллом

из Северной Америки (табл. 2).

Таблина 2 Химический состав бериппа (вес. %)

Компонент	Исследуемый бе- рилл *	Берилл из Пенсильва нии (⁵)
SiO_2	67,22	66,00
BeO	10.34	10,53
Al_2O_3	14,22	17.60
$\mathrm{Fe_2O_3}$	2,46	4,98
MnO	0.03	
Li_2O	0.2	_
K_2O	0,15	_
Na ₂ O	1,73	_
CaŌ	0.27	
MgO	1,17	
H_2O	2,36	
	400.05	400.00
умма	100.05	100.06
, П. П.	2,47	0.95

Кристаллохимическая формула $\times (Be_{2,19}K_{0,52}Li_{0,71})_{2,92}(Al_{1,12}Fe_{0,16}^{-+}Mg_{0,15}Mn_{0,02}Ca_{0,(3}Na_{1,30})_{2,08}(Si_{5,94}\times$ $\times \text{Al}_{0,66})_{6}(O_{16,16}OH_{1,54})_{18}.$

Спектральным анализом (аналитик - М. И. Тасканова) в берилле установлены (%): Sc 0,05, Ti 0,03, Cr 0,005, Ni 0,001, Cu 0,002, Ga 0,002, Ba 0,0007, Yb 0,0003, Pb 0,005, Sr 0,001.

Несомненный интерес представляет и повышенное количество бериллия в околородных диабазах (6). Среднее содержание Ве (по 100 пробам) 3.10^{-4} %, что превышает его кларк в основных породах в 7,5 раза по А. П. Виноградову $(^{7})$ и в 3 раза по $(^{8})$.

Бериллиевую минерализацию в золотоносных кварцевых жилах и повышенные содержания Ве в диабазах, видимо, следует объяснить воздей-

ствием невскрытых гранитоидных бериллиеносных интрузий.

Автор благодарен за помощь в написании статьи В. Ф. Юфимовой и Л. М. Гельману.

Центральная комплексная тематическая экспедиция Северо-Восточного территориального геологического управления

Поступило-21 VI 1972

Магадан

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

^{*} Аналитик — И. С. Рябова.

¹ Н. В. Петровская, Р. М. Константинов, С. В. Сиротинская, Сов. геол., 4, 1 (1971).

2 Н. П. Ермаков, Геохимические системы включений в минералах, М., 1972.

3 Н. В. Петровская, Записки Всесоюзн. минералогич. общ., II сер., ч. 85, 3, 321 (1956).

4 В. И. Михеев, Рентгенометрический определитель минералов, М., 1957.

5 Handbuch der Mineralchemie, Band 2, 2 Abteilung, Dresden und Leipzig, 1917.

6 М. Л. Гельман, Геология и геофизика, 2, 133 (1963).

7 А. А. Беус, Геохимия, минералогия и генетические типы месторождений редких элементов, 1, М., 1964.

8 К. К. Тигекіап, К. Н. Wedepohl, Geol. Soc. Am. Bull., 72, 2, 486 (1964). 186 (1961).