УДК 547.13

ФИЗИЧЕСКАЯ ХИМИЯ

В. И. СОКОЛОВ, К. И. ГРАНБЕРГ, В. В. БАШИЛОВ, Д. А. ЛЕМЕНОВСКИЙ, П. В. ПЕТРОВСКИЙ, академик О. А. РЕУТОВ

КАРБОКАТИОНЫ, СОДЕРЖАЩИЕ о-СВЯЗЬ ЗОЛОТО — УГЛЕРОД

Исследование зависимости структуры промежуточных частиц, образованных олефинами и электрофилом НдХ, от природы олефина привело к обнаружению того факта, что в ряде случаев реализуется открытая структура β-меркурированных карбокатионов (1, 2). Аналогичное заключение было сделано для 1,1-диарилэтилкатионов, содержащих в метильной группе атом галоида. Между карбокатионами, содержащими ртуть и бром, обнаружено характерное различие в химических сдвигах карбониевого углерода (3). Ранее было предложено оценивать по величине $\Delta\delta_{ extsf{c}}$ степень нуклеофильного участия гетероатома X в делокализации положительного заряда (3). Нельзя исключить возможность того, что делокализация, происходящая по механизму гиперконъюгации связи углерод элемент (вертикальная стабилизация (4)), заметно не влияет на $\delta_{\rm C}$ (2). Для проверки такой возможности целесообразно изучение более широкого круга карбокатионов, содержащих атомы различных элементов. В настоящем сообщении мы описываем β-аурированные карбокатионы 1,1-дифенилэтильного ряда.

2,2-Дифенилвинил (трифенилфосфин)-золото (I) получено в эфире по реакции 2,2-дифенилвинилмагнийбромида с хлоридом (трифенилфосфин)-

золота, аналогично комплексу незамещенного винилзолота (5)

$$(C_6H_5)_2C=CH-MgBr+ClAu(PPh_3)\rightarrow (C_6H_5)_2C=CH-AuPPh_3.$$
 (1)

Соответствующий карбокатион II получается при протонировании I в CF₃COOH пли H₂SO₄.

В отличие от незамещенного аналога (5), I окрашено в светло-желтый цвет, что связано с наличием в спектре поглощения широкой полосы, λ_{max} 301 м μ , ϵ 21 300, заходящей в видимую область (рис. 1). Эта полоса, как мы полагаем, может быть связана с внутримолекулярным переносом

заряда в нейтральной молекуле.

При растворении I в СF₃СООН образуется темно-коричневый раствор карбокатиона II, спектр п.м.р. которого содержит сигнал δ 5,1 м.д.; он может быть приписан метиленовой группе, σ-связанной с атомом золота *. В результате разложения II, происходящего с выделением металлического золота на протяжении 15—30 мин. быстро возрастает интенсивность сигнала δ 1,2 м.д. Последний можно отнести к метильной группе трифторацетата 1,1-дифенилэтанола, поскольку катион III, образующийся при деметаллировании, легко присоединяет пон СF₃СОО⁻. Катион II значительно более устойчив в 98% H₂SO₄, где разложения с выделением металла не наблюдается. Однако происходит деметаллирование, приводящее к катиону III,

^{*} В соответствующем β -меркурированном карбокатионе протоны метиленовой группы имеют δ 4,9 м.д. (2).

⁶ Доклады АН, т. 214, № 2

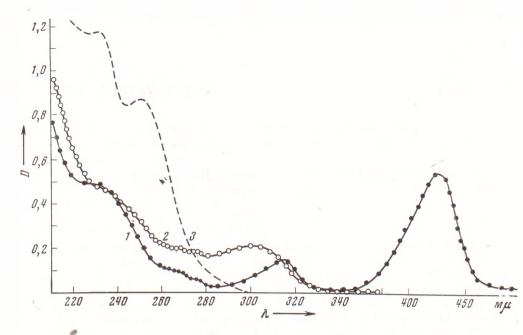


Рис. 1. У.-ф. и видимые спектры I в 98% $\rm H_2SO_4$ (1) в абсолютном этаноле (2) и 1,1-дифенилэтилен в n-гексане (3), 1, $2-C_1$ =1·10⁻⁴ мол/л, $3-C_1$ =1·10⁻³ мол/л

вероятно, в результате последовательных равновесных реакций:

$$(C_6H_5)_2C - CH_3 \qquad (III)$$

$$(C_6H_5)_2C - CH - AuPPh_3 + H^+ \supseteq (C_6H_6)_2\overset{+}{C} - CH_2AuPPh_3 \supseteq (C_6H_5)_2\overset{+}{C} = CH_2 + AuPPh_3$$

$$(II) \qquad (II)$$

На присутствие в растворе значительного количества иона III указывает наличие в спектре C^{13} я.м.р. (рис. 2) характерного сигнала метильной группы, $\delta_C+161,0$ м.д. * В карбониевой области имеются два сигнала. Химический сдвиг одного из них,— 37,0 м.д., отвечает центральному атому катиона III (2). Другой относится к карбениевому атому интересующего нас катиона II: -19,0 м.д. Сигнал углерода метиленовой группы, связанного

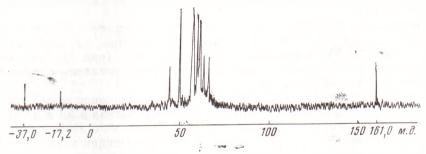


Рис. 2. Спектр я.м.р. С¹³ раствора I в 98% H₂SO₄

с золотом, либо не наблюдается, либо попадает в диапазон ароматической системы, который слишком сложен для интерпретации.

Таким образом, мы можем констатировать, что $\Delta \delta_{\text{Аиррh}_3} = +18,0$ м.д., что значительно больше, чем даже для брома в этой системе. В связи с этим

^{*} Химические сдвиги углерода-13 даны в шкале CS₂.

возникло подозрение, что освобождающийся при деметаллировании катион Ph_3PAu^+ , возможно, реагирует с находящимся в системе I. Дело в том, что ранее была установлена способность комплексов винил- и арилзолота $\binom{6}{7}$ реагировать с Ph_3PAu^+ , образуя стабильные соли $[R(AuPPh_3)_2]^+BF_4^-$. Аналогичная диаурированная соль была получена и для дифенилвинильного радикала с употреблением рассчитанного количества кислоты согласно уравнению:

$$2(C_6H_5)_2C = CH - AuPPh_3 + HBF_4 \xrightarrow{\mathfrak{somp}}$$

$$\stackrel{\mathfrak{somp}}{\longrightarrow} [(C_6H_5)_2C - CH(AuPPh_3)_2]BF_4 - + (C_6H_5)_2C = CH_2. \tag{IV}$$

Соль IV в хлороформе показывает химический сдвиг центрального углерода, равный 0, а в H_2SO_4 — только сигналы двух атомов углерода хорошо известного иона III и более слабый сигнал при $-53,0\,$ м.д. * Этот эксперимент показывает, что заведомый ион IV, содержащий два атома золота, претерпевает полное деметаллирование в H_2SO_4 , наряду с неизвестной побочной реакцией, и потому не может быть частицей, наблюдаемой при протонировании I. По-видимому, не случайно, что введение каждого атома золота вызывает сдвиг δ_{C^+} на одну и ту же величину (18 м.д.) в сторону сильных полей. Аддитивность, вероятно, легче всего, объяснить индуктивной природой влияния металла. Возможность учета чисто индуктивного эффекта в химических сдвигах C^{13} в карбокатионах, согласно (8), будет обсуждена в одной из последующих работ.

Строение диаурированной соли IV еще не может быть интерпретировано однозначно. Хотя вероятно, что она имеет характер карбокатиона, в котором положительный заряд стабилизирован и двумя фенильными группами, и двумя атомами металла (Va), нельзя исключить и возможность образования единой тетраэдроподобной системы (Vб), учитывая склонность золота к образованию кластеров (9). Если верна структура Vб, то следует ожидать возможного существования тетраэдрических систем, содержащих три атома золота и один атом углерода.

2,2 - Дифенилвинил - (трифенилфосфин) - золото. К 0,2 г порошка магния под аргоном был сразу добавлен раствор 2,0 г 2,2-дифенилвинилбромида и 0,01 мл иодистого метила в 20 мл абс. эфира. После кипячения до полного растворения магния (4 часа) к реакционной смеси добавлен раствор 2,8 г $ClAuPPh_3$ в 20 мл абс. $T\Gamma\Phi$. Через час смесь разложена водой, органический слой высушен K_2CO_3 , и растворитель удален в вакууме. Получено 2,2 г (61%) 2,2-дифенилвинил-(трифенилфосфин)-золота (I), т. пл. 156-158° (из смеси бензол-гексан), светло-желтые кристаллы.

К эфирному раствору 0,70 г I был добавлен эфирный раствор HBF₄ до полноты осаждения желтого порошкообразного осадка. Бесцветный раствор декантирован, осадок тщательно промыт эфиром, пентаном и высушен

^{*} Ввиду наличия трифенилфосфина ароматическая область спектра не может быть интерпретирована.

в вакууме. Выделено 0.61 г (94%) борфторида [2.2-дифенилвинил-(трифенилфосфин)-золото-(трифенилфосфин)-золота (IV), т. пл. 101-103°.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 20 VI 1973

Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Соколов, В. В. Башилов и др., ДАН, **213**, № 5 (1973). ² V. I. Sokolov, V. V. Bashilov et al. Tetrahedron Letters, in press. ³ G. A. Olah, C. L. Jewell, A. M. White, J. Am. Chem. Soc., **91**, 3961 (1969). ⁴ W. Hanstein, H. J. Berwin, T. G. Traylor, J. Am. Chem. Soc., **92**, 829 (1970). ⁵ A. H. Hесмеянов, Э. Г. Перевалова и др. Изв. АН СССР, сер. хим., **1972**, 653. ⁶ К. И. Грандберг, Т. В. Баукова и др., ДАН, **206**, 1355 (1972). ⁷ А. Н. Несмеянов, Э. Г. Перевалова и др., Вестн. Московск. унив., № 4 (1973). ⁸ G. A. Olah, Y. К. Мо, Y. Halpern, J. Am. Chem. Soc., **94**, 3551 (1972). ⁹ F. Cariati, L. Naldini, Inorg. chim. acta, **5**, 172 (1971).