УДК 547.422:542.952.1:547.361

ХИМИЯ

М. И. ФАРБЕРОВ, А. В. БОНДАРЕНКО, В. М. ОБУХОВ, Т. В. ЦИЛЮРИК, И. П. СТЕПАНОВА

СИНТЕЗ НЕНАСЫЩЕННЫХ СПИРТОВ ИЗОМЕРИЗАЦИЕЙ ОКИСЕЙ БУТЕНОВ

(Представлено академиком М. И. Кабачником 30 V 1973)

Синтез ненасыщенных спиртов изомеризацией окиси бутенов представляет большой практический и теоретический интерес. К настоящему времени исследована лишь реакция изомеризации окиси пропилена в ал-

лиловый спирт на трехзамещенном фосфате лития (1-3).

Нами изучено превращение окисей бутена-2 и изобутилена соответственно в метилвинилкарбинол и изопропенилкарбинол (металлиловый спирт) на катализаторе на основе трехзамещенного фосфата лития. Исходные окиси получены нами с количественными выходами эпоксидиро ванием соответствующих бутенов органическими гидроперекисями (4) Опыты по изомеризации проводились в проточной системе, обеспечиваю щей изотермические условия протекания реакции.

Изучение реакции изомеризации окиси бутена-2 (I) в интервале тем ператур 240—315° С и объемной скорости 1—3 час⁻¹ показало, что при бо лее низких температурах образуется в основном метилвинилкарбинол (III) (выход 99,1% от теории). При повышении температуры, наряду с ненасы щенным спиртом, наблюдается образование небольших количеств метил этилкетона (IV) и изомасляного альдегида (V) (выходы метилвинилкар бинола 89,1%, метилэтилкетона 6,26%, изомасляного альдегида 1,57% от теории).

При изомеризаци окиси изобутилена (II) в интервале температур 170- 230° и объемной скорости 1-4 час⁻¹ образуется ненасыщенный спиртизопропенилкарбинол (VI) и изомасляный альдегид (VII), причем выхолоследнего увеличивается с повышением температуры (при 210° и объем

ной скорости 1-1.5 час $^{-1}$ выход изопропенилкарбинола 94.0%, изомасля-

ного альдегида 6,0% от теории).

Полученные изомеризацией окисей бутена-2 и изобутилена ненасыщенные спирты были выделены и охарактеризованы: метилвинилкарбинол — т. кип. 97,0°, d_4^{25} 0,8240, n_D^{25} 1,4087, металлиловый спирт — т. кип. 113—114°, d_4^{20} 0,8527, n_D^{20} 1,4229. Полученные константы соответствуют данным (5). Структура полученных спиртов была подтверждена и.-к. спектроскопией (рис. 1). В и.-к. спектре метилвинилкарбинола имеются полосы валентных колебаний групп, отвечающих CH_2 —CH (919, 991, 1422 см $^{-1}$), C—O вторичного спирта (1064 см $^{-1}$), OH (1290, 3320 см $^{-1}$). Характеристические частоты и.-к. спектра металлилового спирта соответствуют: 893 см $^{-1}$ — колебаниям группы CH_2 -, 1019 см $^{-1}$ — валентным колебаниям группы C—O первичного спирта; 3410—3340 см $^{-1}$ — валентным колебаниям группы C—O первичного спирта; 3410—3340 см $^{-1}$ — валентным колебаниям группы C—O первичного спирта; 3410—3340 см $^{-1}$ — валентным колебаниям группы C

Кинетика реакции изомеризации окисей изучалась в условиях, исключающих диффузионное торможение. На рис. 2 представлены кинетические

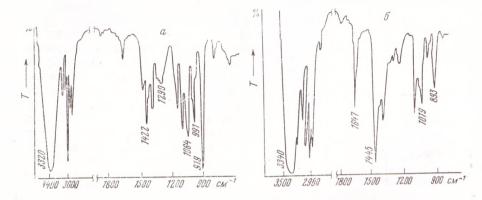


Рис. 1. И.-к. спектр метилвинилкарбинола (а) и изопропенилкарбинола (б)

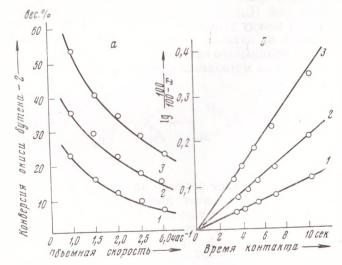


Рис. 2. Кинетические кривые расхода окиси бутена-2 при изомеризации (а: $1-230^\circ$; $2-240^\circ$; $3-250^\circ$) и полулогарифмические анаморфозы кривых 1-3 (б)

кривые расхода окиси бутена-2 в метилвинилкарбинол и обработка их по интегральному методу. Прямолинейность зависимости $1 g \, 100/(100-x)$ от времени наглядно доказывает первый порядок реакции. По углу наклона прямых рассчитаны константы скорости реакции. Аналогично рассчитаны

константы скорости изомеризации окиси изобутилена в металлиловый

спирт (табл. 1).

Как видно, константы скорости изомеризации окиси изобутена в металлиловый спирт во много раз выше скорости изомеризации окиси бутена-2 в метилвинилкарбинол. Значительное различие реакционной способности данных окисей можно объяснить механизмом реакции изомеризации окисей в ненасыщенные спирты.

Предлагаемый ниже механизм, в отличие от других (²), позволяет объяснить образование ненасыщенного спирта как основного продукта реакции, побочных продуктов и различную реакционную способность окисей в реакции изомеризации. При этом образование побочных продуктов про-

текает по несколько иному механизму.

Как известно, литиевые катализаторы этого типа имеют основной характер $(^2, ^3)$. Отрыв протона нуклеофильным центром катализатора (N:) происходит, по нашему мнению, от углеродного атома C_4 метильной груп-

Таблица 1
Константы скорости реакции
изомеризации окисей бутенов в
ненасыщенные спирты

	T-pa, 'C	k·102,
Окись изобутена	160 170 180	10,6 22,5 47,2
Окись бутепа-2	230 240 250	3,5 6,5 11,2

пы (нумерация углеродных атомов на схеме), находящейся в α-положении к окисному кольцу. Известно (в), что существует некоторая аналогия в поведении окисного кольца и двойной связи. В этом случае отрыв протона от метильной группы, находящейся в α-положении к окисному кольцу, облегчен наличием смещения электронов от метильной группы к окисному кольцу (некоторая аналогия с σ—π-сопряжением у олефинов). Место разрыва окисного кольца также зависит от характера заместителей и происходит преимущественно со сто-

роны заместителей, проявляющих +I-эффект (6). При этом разрыв углерод-кислородной связи происходит таким образом, что кислород отрывается от углеродного атома (C_2) вместе с электронной парой. За счет образования двойной связи между углеродами C_1 и C_2 и атаки кислорода протоном, адсорбированном на катализаторе, происходит стабилизация молекулы с получением ненасыщенного спирта.

Схема образования метилвинилкарбинола из окиси бутена-2

Таким же образом протекает реакция для окиси изобутена с той разницей, что окись изобутена имеет две электронодонорные метильные группы, находящиеся у одного и того же атома углерода окисного кольца. В результате этого облегчен как отрыв протона, так и разрыв углерод-кислородной связи, чем и можно объяснить значительное различие в скоростях реакции изомеризации для окисей бутена-2 и изобутена.

Образование побочных продуктов, метилэтилкетона и изомасляного альдегида, при изомеризации окиси бутена-2 происходит по несколько иному механизму. В этом случае протон отрывается от углеродного атома (C_2) окисного кольца. При перемещении гидрид-иона от углеродного атома C_2 к C_2 образуется енольная форма метилэтилкетона, которая при присоединении протона к кислородному атому изомеризуется в метилэтилкетон. «Метидное» же перемещение дает енольную форму изомасляного альдегида, которая превращается в изомасляный альдегид.

Трудностью отрыва протона от углеродного атома окисного кольца объясняется сравнительно небольшая скорость протекания этих вторичных реакций.

Схема образования метилэтилкетона

Схема образования изомасляного альдегида

Ярославский технологический институт

Поступило 3 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. Г. Сергеев, Л. М. Букреева, А. Г. Полковникова, Хим. наука и пром., 2, 133 (1957); ЖПХ, 31, 1415 (1958). ² Р. Desmarescaux, Inform. chim., № 74, 27 (1969). ³ М. Соиdurier, М. V. Mathiev et al., Bull. Soc. chim. France, 1968, 1821. ⁴ В. М. Обухов, М. И. Фарберов и др., Нефтехимия, 11, 410 (1971); А. В. Бондаренко, Т. В. Цилюрик и др., Нефтехимия, 12, 250 (1972). ⁵ Словарь органических соединений, ред. И. Хейльброн, Г. М. Бэнбери, 2, ИЛ, 1949. ⁶ Т. И. Темникова, Курс теоретических основ органической химии, Л., 1968.