УДК 547.963.3

БИОХИМИЯ

Э. В. ФРИСМАН, А. Н. ВЕСЕЛКОВ, С. В. СЛОНИЦКИЙ, В. И. ВОРОБЬЕВ

ВЛИЯНИЕ РАСТВОРИТЕЛЯ НА КОНФОРМАЦИЮ МОЛЕКУЛЫ ДЕЗОКСИРИБОНУКЛЕИНОВОЙ КИСЛОТЫ

(Представлено академиком А. А. Баевым 25 VII 1973)

Параметры вторичной структуры молекулы ДНК зависят от природы ДНК, ионного состава и относительной влажности препарата (¹-¹). Однако при относительной влажности ≥95% и в водно-солевых растворах молекула ДНК принимает В-форму. Вариация температуры (или рН) раствора может вызвать конформационный переход в молекуле ДНК, связанный с разрушением ее вторичной структуры (⁵). Сведения о природе сил, стабилизирующих структуру молекулы ДНК, можно также получить исследованием конформационных превращений, вызванных различными растворителями.

В работе (6) изучалось влияние спирто-водных растворителей на молекулярную структуру ДНК. Основным выводом является обратимость денатурирующего действия спирта на ДНК. Подробно исследованы спектры кругового дихроизма Na-ДНК тимуса теленка в смешанных растворителях (7). Из сопоставления с данными работы (8) показано, что в смеси, содержащей ~80% этанола и 5·10-4 M NaCl, молекула ДНК принимает А-форму. В данной работе изучалось влияние водно-этанольных растворителей различной ионной силы на конформацию молекулы ДНК методами динамического двойного лучепреломления и вязкости, что позволит получить информацию о вторичной и третичной структурах молекулы ДНК.

Использована Na-ДНК из тимуса теленка с молекулярным весом (м.в.) $28\cdot 10^6$ дальтон, определенным по ее характеристической вязкости в 0,15 M NaCl. Каждую систему получали смешением водно-солевого раствора ДНК и спирта, содержащих одинаковое количество ионов Na+. Концентрацию $C_{\text{ДНК}}$ определяли по поглощению раствора при λ 270 и 290 мµ после его гидролиза с 6% HClO4 с учетом особенностей изучаемой системы. Исследовали лишь те растворы, для которых атомный коэффициент поглощения E_{260} (p) соответствовал нативному состоянию ДНК. Относительную вязкость раствора (η_{τ}) при разных градиентах скорости потока (G) изучали на модифицированном вискозиметре Зимма и Кротзерса. Для каждой системы определяли характеристическую вязкость

$$[\eta] = \lim_{\substack{G \to 0 \ C_{\mathrm{ZHR}} o 0}} \left(rac{\eta_r - 1}{C_{\mathrm{ZHR}}}
ight).$$

Величину двойного лучепреломления Δn измеряли на установке с эллиптическим компенсатором и фотоэлектрической фиксацией. Во всех изученных растворах величина Δn отрицательна и в использованном интервале градиентов скорости пропорциональна G. Вычислены динамооптические постоянные

$$[n] = \lim_{\substack{G \to 0 \\ C_{\text{ДHK}} \to 0}} (\Delta n/g \eta_0 C_{\text{ДHK}}).$$

Здесь η_0 — вязкость растворителя. Известно, что отношение $\lfloor n \rfloor / \lfloor \eta \rfloor$ про-

порционально разности поляризуемостей макромолекулы в растворе $(\gamma_1-\gamma_2)$, которая может быть обусловлена как собственной оптической анизотропией макромолекулы $(\gamma_1-\gamma_2)_i$, так и индуцированной электрическим нолем световой волны $(\gamma_1-\gamma_2)_i$. Многочисленные исследования показали, что у молекулы ДНК в водно-солевых растворах значение $(\gamma_1-\gamma_2)_i$ пренебрежимо мало в сравнении с $(\gamma_1-\gamma_2)_i$. Это вытекает из отсутствия концентрационной зависимости величины $[\Delta n/g\eta_0(\eta_r-1)]_{g\to 0}$ и совпадения ее с $[n]/[\eta]$ [§]. Такая закономерность соблюдается и в спирто-водных растворах ДНК. У линейных макромолекул $(\gamma_1-\gamma_2)_i$ определяется разностью поляризуемостей мономерного остатка $(a_{\parallel}-a_{\perp})$ в параллельном и перпендикулярном направлениях к цепи и ее термодинамической жесткостью.

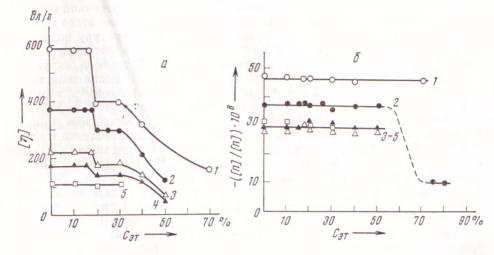


Рис. 1. Зависимость $[\eta]$ (a) и $[n]/[\eta]$ (б) от объемной концентрации этанола в различных ионных силах. $I-4\cdot 10^{-4},\ 2-1\cdot 10^{-3},\ 3-4\cdot 10^{-3},\ 4-1\cdot 10^{-2},\ 5-1\cdot 10^{-1}\ M$ NaCl

Отсюда следует, что величина $(\gamma_1 - \gamma_2)_1$ связана со вторичной структурой

молекулы ДНК.

Зависимость [ŋ] от процентного содержания этанола при разных понных силах и изображена на рис. 1. Кривые показывают, что до объемной концентрации этилового спирта, равной 20%, [η] ДНК сохраняет постоянное значение. При 20% этанола в смеси величина [η] кооперативно уменьшается и тем больше, чем меньше и. При дальнейшем добавлении этанола вновь обнаруживается область постоянства [ŋ], после которой возникает постепенное падение [η]. Заметим, что при концентрации этанола ≥50% наблюдается частичное осаждение ДНК. Это может привести к заниженным значениям [ŋ], так как в первую очередь будут осаждаться высокомолекулярные фракции ДНК. Поведение величины [η] в области $0 \le C_{27} \le 70\%$ связано лишь с изменениями в третичной структуре молекулы ДНК. Об этом свидетельствует постоянство величины $[n]/[\eta]$ в указанном интервале концентраций этанола при фиксированном значении µ (рис. 1). Возможное фракционирование ДНК, в случае ее частичного осаждения, не отразится на величине $[n]/[\eta]$, так как зависимость $[n]/[\eta]$ от м.в. для ДНК наблюдается при м.в. <2.106 дальтон. В наших опытах. при наибольшем осаждении ДНК, ее м.в. (28·10⁶) изменялся не более чем в два раза. Об этом можно было судить по вязкости отдиализованного от этанола раствора ДНК при известных μ и $C_{\text{днк}}$. При $C_{\text{эт}} = 75$ и 80% $\mu=10^{-3}$, величина $[n]/[\eta]$ претерпевает трехкратное уменьшение (рис. 1).

Можно убедиться, что изменение величин $[\eta]$ и $[n]/[\eta]$ связано с поведением спирто-водного растворителя, физические свойства которого обладают сложной зависимостью от концентрации спирта (10-13): предпола-

гается, что при небольших концентрациях спирта его молекулы внедряются в рыхлую структуру воды, не нарушая ее пространственной структуры. В случае этанола такая ситуация имеет место до $C_{\text{эт}} \approx 20 \,\%$ (~ 7 мол. %). Увеличение концентрации спирта уже не позволяет его молекулам разместиться в междоузлиях воды, и упорядоченная пространственная структура воды нарушается. При этом возникают экстремумы физических свойств спирто-водной смеси: положения максимума и.-к. спектра поглощения воды, интенсивности изотропного рассеяния света, теплоем-

кости и др. (10-13). Сопоставление поведения молекулы ДНК и водно-этанольной смеси показывает, что начало структурного перехода в растворителе вызывает кооперативное уменьшение [η], связанное с изменением третичной структуры макромолекулы. Можно предположить, что уменьшение этого эффекта при возрастании и обусловлено влиянием ионов на структуру воды. Так, например, при µ=0,1 М расстояние между одно-одновалентными ионами равно 20 Å, что указывает на нарушение пространственной структуры воды. Последующее постоянство [η] (до 30% этанола) можно сопоставить с данными по исследованию и.-к. спектров поглошения воды при разных концентрациях этанола (13). В этой области добавление этанола не вызывает смещения полосы поглощения воды, которое наблюдалось при его меньших концентрациях. Предполагается, что в развивающихся спиртоводных ассоциатах структура воды не изменяется. С этим может быть связана неизменность параметров молекулы ДНК. Можно думать, что при дальнейшем увеличении концентрации этанола структура воды уже существенно разрушена. При этом добавление спирта приводит к монотонному падению [η]. Заметим, что при $C_{3\tau} > 50\%$ кривые рис. 1 уже не отражают

зависимости [η] от $C_{\text{эт}}$ вследствие частичного осаждения ДНК.

Известно, что размеры молекулы ДНК в основном определяются электростатическими взаимодействиями между ее фосфатными группами. Можно предположить, что кооперативное изменение этих взаимодействий связано с экстремальным значением подвижности ионов Na+, наблюдаемым при ~20% этанола (14). Такое предположение позволяет понять поведение $[\eta]$ при больших μ . Однако зависимость $[n]/[\eta]$ от $C_{a\tau}$ заставляет предположить, что изменение подвижности ионов с концентрацией этанола не влияет на ближние электростатические взаимодействия в цепи ДНК. Кривые рис. 1 показывают, что этанол не изменяет характера зависимости $[n]/[\eta]$ от μ . Как и в случае водно-солевых растворов ДНК, возрасташие абсолютного значения $[n]/[\eta]$ при уменьшении μ наблюдается только в области малых ионных сил и обусловлено изменением термодинамической жесткости цепи, зависящей от ближних электростатических взаимодействий в цепи (15). Наблюдаемое изменение $[n]/[\eta]$ при $C_{3\tau}=75$ и 80%, свидетельствует о конформационном переходе во вторичной структуре молекулы ДНК. При указанных концентрациях этанола в растворителе образуются комплексы C₂H₅OH...H OH...OH C₂H₅ с обнаженными гидрофобными группами (13). Это должно привести к ослаблению гидрофобных стэкинг-взаимодействий и возможному переходу молекулы ДНК в А-форму, в которой эти взаимодействия играют меньшую роль. Действительно, в аналогичных условиях спектр к.д. ДНК имеет вид, характерный для ДНК в A-форме (⁷).

Чтобы выяснить, соответствует ли уменьшение $[n]/[\eta]$ В \rightarrow А-переходу, мы оценили $(a_{\parallel}-a_{\perp})_A$ для молекулы ДНК в А-форме. Оценка показала, что, учитывая лишь уменьшение $(a_{\parallel}-a_{\perp})$ при В \rightarrow А-переходе, нельзя скомпенсировать наблюдаемого изменения $[n]/[\eta]$. Чтобы удовлетворить экспериментальному значению $[n]/[\eta]$, необходимо предположить, что в А-форме молекула ДНК обладает большей гибкостью. Возможно, однако, что некоторую роль в уменьшении $[n]/[\eta]$ играет более высокое значение $E_{260}(p) \simeq 7100$, полученное для этих растворов $(C_{3\tau}=70$ и 80%, $\mu=10^{-3}$ M). Трудно сказать, является ли приведенное значение $E_{260}(p)$ признаком

частичной денатурации ДНК. Многочисленные опыты показали, что в тех случаях, когда этанол вызывал денатурацию ДНК, она была строго кооперативна в согласии с данными других авторов (6).

Таким образом, наше исследование показывает, что третичная и вторичная структуры молекулы ДНК зависят не только от состава, но и от

структуры растворителя.

Ленинградский государственный университет им. А. А. Жданова

Поступило 19 VII 1973

Институт цитологии Академии наук СССР Ленинград

цитированная литература

¹ R. Langridge, W. Seeds et al., Biophys. Biochem. Cytol., 3, 767 (1957).

² R. Langridge, D. Marvin et al., J. Mol. Biol., 2, 38 (1960).

³ D. Marvin, M. Spencer et al., J. Mol. Biol., 3, 547 (1961).

⁴ M. A. Mokyjeckum, K. A. Kahutohoba, T. Д. Мокујескай, К. А. Канитонова, Т. Д. Мокујеская, Мол. биол., 6, 883 (1972).

⁵ Iu. S. Lazurkin, M. D. Frank-Kamenetski, E. V. Trifonov, Biopolymers, 9, 1253 (1970).

⁶ T. Herskovits, S. Singer, E. Geiduschek, Arch. Biochem. and Biophys., 94, 99 (1961).

⁷ B. И. Иванов, Л. Е. Минченкова и др., Тез. секц. докл. IV Международн. биофиз. конгр., М., 2, 1972, стр. 197.

⁸ M. Tunis-Schneider, M. Maestre, J. Mol. Biol., 52, 521 (1970).

⁹ A. Peterlin, J. Polym. Sci., 12, 45 (1954).

¹⁰ A. И. Сидорова. И. Н. Кочнев, Тепловое движение молекул и межмолекулярное взаимодействие в жидкостях и растворах. Самарканд, 1969, стр. 168.

¹¹ М. Ф. Вукс, Л. В. Шурупова, Вестник Ленингр. унив., физ. и хим., 3, 146 (1971).

¹² С. П. Ривкин, А. Н. Винникова, Теплоэнергетика, № 6, 59 (1964).

¹³ И. Н. Кочнев, Сборн. Структура и роль воды в живом организме, 1970, № 3, стр. 8.

¹⁴ Н. О. Spivey, Тh. Shedlovsky, J. Phys. Chem., 71, 2165 (1967).

¹⁵ Э. В. Фрисман, Тез. IV Международн. биофиз. конгр., М., 1972, 11, 2/4, стр. 25.