УДК 548.736.6

КРИСТАЛЛОГРАФИЯ

Д. Ю. ПУЩАРОВСКИЙ, Е. А. ПОБЕДИМСКАЯ, Б. Н. ЛИТВИН, академик Н. В. БЕЛОВ

Na₂MnIn[SiO₃(OH)]₂(OH). СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Расшифровка структуры Na₂MnIn[SiO₃(OH)]₂(OH) — очередной этап в изучении природных Mn-минералов и их синтетических аналогов на кафедре кристаллографии MГУ и в Институте кристаллографии АН СССР. Основная задача — выяснение кристаллохимических причин специфических особенностей Mn как одного из ведущих «видообразующих» элементов (по А. С. Поваренных), участвующего в 171 минеральном виде (¹). Многие из Mn-соединений обладают исключительными оптическими свойствами, объяснить которые удается лишь с привлечением тонких деталей

строения вещества.

Кроме Мп, в состав полученных кристаллов входит более экзотический элемент In, широко используемый в полупроводниковой технике, в частности создающий в кристаллах германия дырочную проводимость. Недостаточная полнота кристаллохимии In в первую очередь связана с тем, что In не только принадлежит к мало распространенным элементам земной коры, но и находится преимущественно в рассеянном состоянии. Лишь сравнительно недавно было установлено четыре природных минерала * с In в качестве самостоятельного компонента. Среди синтетических In-соединений можно выделить шесть силикатов — структурных аналогов эгирина, меланотектита, граната, берилла и тортвейтита (2).

Кристаллы Na₂MnIn[SiO₃(OH)]₂(OH) получены в 20% водных растворах NaOH при 450° C из шихты (х.ч. реактивы) MnO 10 г; In₂O₃ 3 г и SiO₂ 5 г в стандартных автоклавах (объем 180 см³, сталь 45×МНФА). Футеровка не применялась и потому при высоком парциальном давлении водорода кристаллизация фактически протекала в водно-газовой смеси. За шесть суток реакция образования Na₂MnIn[SiO₃(OH)]₂(OH) проходила до конца и получались светло-коричневые прозрачные изометрические или слегка уплощенные кристаллы размером 2—3 мм. Их габитус и гониометрическое изучение показали, что кристаллы с гранями бипирамиды {111} и призмы {110} относятся к ромбической системе.

Результаты химического анализа синтезированных кристаллов (вес %):

SiO₂ Na₂O MnO Fe₂O₃ In₂O₃ H₂O 25,84 18,24 29,54 1.05 24,52 0.53

с учетом рентгеноструктурных данных удалось развернуть в формулу $Na_2MnInSi_2O_6(OH)_3$. Экспериментальная плотность $2,65\ r/cm^3$, рентгеновская $3,18\ r/cm^3$.

Исходный рентгенографический материал составили 339 независимых отражений с 8 (hk0-hk7) вейсенберговских разверток $\left(\max\frac{\sin\theta}{\lambda}\right)$ = =0.943 Å⁻¹, Мо-излучение). Интенсивности оценены по $2^{1/4}$ -шкале марок

^{*} Это самородный In, рокезит $CuInS_2$, индит $FeIn_2S_4$, и джалиндит $In(OH)_3$.

почернений. Определенные по рентгенограммам вращения— качания и уточненные на лифрактометре «Синтекс» $P\bar{1}$ параметры ромбической ячейки оказались следующими (в Å): $a=15,250\pm0,044$; $b=7,601\pm0,018$; $c=7,154\pm0,010$. В этой ячейке содержится четыре единицы $Na_2MnIn \cdot [SiO_3(OH)]_2(OH)$. Систематические погасания разрешали центрированные группы: Cmmm, Cmm2, Cm2m, C2mm и $Cmc2_4$. Уже на первом этапе отна-

 $\label{eq:Tadauqa1} Tadauqa1 $$Na_2MnIn[SiO_3(OH)]_2(OH)$. Координаты базисных атомов и индивидуальные температурные поправки$

	x/a	y/b	z/c	B_j		x/a	y/b	z/c	B_j
In Mn Si Na	0 0 0,131 0.255	$\begin{array}{c c} -0,001 \\ -0,482 \\ 0,269 \\ 0,516 \end{array}$	0 0,006 0,247 0,492	0,786 0,492 0,397 1,12	O ₁ O ₂ O ₃ (OH) ₁ (OH) ₁₁	0,098 0,112 0,100 0,243 0	0,478 0,192 0,165 0,289 0,145	0,278 0,448 0,079 0,223 0,790	2,17 1,27 1,76 1,36 2,15

Таблица 2 Na₂MnIn[SiO₃(OH)]₂(OH). Межатомные расстояния (Å)

Na-поли эдр		Мп-призма	In-октаэдр	Si-тетраэдр			
Na — O ₃ O ₃ (OH) ₁ (OH) ₁ (OH) ₁ (OH) ₁ O ₁		$\begin{array}{c} \text{Mn} - \text{O}_1 & 2,53 \\ \text{O}_1' & 2,15 \\ \text{O}_1'' & 2,15 \\ \text{O}_1'' & 2,15 \\ \text{O}_2 & 2,53 \\ \text{O}_2' & 2,53 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 0 & 0_2 & 1,58 \\ 0_3 & 1,52 \\ (OH)_1 & 1,72 \end{bmatrix} \begin{bmatrix} 0_3 & 2,7 \\ (OH)_1 & 2,6 \\ 0_2 & 0_3 & 2,6 \\ (OH)_1 & 2,6 \end{bmatrix} $			
Среднее	2,73	2,40	2,15	1,62 2,6			

ла группа Cmmm, «посылавшая» все катионы в частные позиции, что не подтверждается трехмерным распределением функции Паттерсона. Локализация положений тяжелых атомов с последующим расчетом R_{hhl} -факторов с наибольшей вероятностью соответствовала группам Cmm2 и $Cmc2_1$, в рамках которых кристаллохимические модели имеют общие фрагменты. Скомпанованный в рамках группы Cmm2 структурный мотив настолько асимметричен (половина элементарной ячейки оказывается при этом почти полностью пустой), что от этого варианта пришлось отказаться. При отчетливом псевдопериоде по оси c (3,077 Å) полученная в группе $Cmc2_1$ модель структуры выглядела вполне убедительно.

Определенная методом «тяжелого» атома структура уточнена до $R_{\it hhl}$ -фактора=14,1%. Координаты базисных атомов и межатомные расстояния

приводятся в табл. 1 и 2 соответственно.

В составляющих инженерную основу структуры Na₂MnIn[SiO₃(OH)]₂·(OH) катионных стенках, параллельных (100), цепочки из In-октаэдров чередуется вдоль [001] с цепочками из искаженных Mn-параллелепипедов (рис. 1). Октаэдры и Mn-параллелепипеды соединяются по общим ребрам. Стенку — одноэтажный слой из чередующихся вдоль *b* Mn- и In-цепочек — можно считать сердечником (³) пакета, в котором роль кольчуги играют Si-ортотетраэдры; они «сидят» на сердечнике и стягивают In-октаэдры. Пакет прорезает зеркальная плоскость, и Si-тетраэдры расположены по одной вертикали [001].

Поворотом около винтовой оси 2, [001] создается симметричный (конгрузнтно тождественный) пакет, но смещенный вдоль направлений x и z. Кремнекислородные тетраэдры двух соседних пакетов образуют как бы зубчатое сцепление. Между зубчатыми кислородными вершинами пакетов помещаются крупные атомы Na, как то характерно для ряда слюдоподобных Na, Ti-структур (4). Четыре Si-тетраэдра (по два сверху и

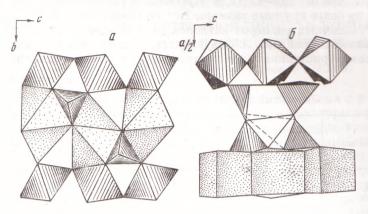


Рис. 1. а — катионный слой с дискретными цепочками из Іпоктаэдров и Мп-параллелепипедов. Над (и под) слоем находятся зубцы — кремнекислородные ортотетраэдры. б — цепочки из Іп-октаэдров и Мп-параллелепипедов в плоскости хг. В межпакетном пространстве между этими цепочками располагаются кремниевые ортотетраэдры в противоположных ориентациях. На уровне их кислородных вершин находятся атомы Na в крупных восьмиверппинниках

снизу) достаточно плотно охватывают Na и их грани собираются вокруг него в Na-восьмивершинник и тогда структура получается весьма компактной и почти лишена свободных промежутков.

In-октаэдр слабо деформирован, что весьма характерно для кислородных соединений индия во всех ранее полученных In-силикатах (2). In-ок-

таэдры связываются в цепочку через гидроксильные группы.

Менее традиционно выглядят Мп-параллелепипеды, разбивающиеся на две псевдотригональные призмы с атомами Мп в общей грани, но одна призма меньше другой и в ней расстояния Мп—О короче; наружное ребро второй призмы удалено на 3,14 Å. Распадание координационного полиэдра на две половины с разными объемами, хотя центральный катион и находится в общей грани двух половин, весьма специфично для ионов в низкой степени валентности. Такие семивершинники, распадающиеся на полуоктаэдры и добавочную тригональную призму, характерны для Sb³+, Bi³+ и даже для Pb²+ в сульфосолях (5). Можно думать, что эти крупные добавочные половины служат вместилищем неотщепляющихся электронов; двух собственных у Sb³+, Bi³+ и Pb²+ и целой пятерки их в Mn²+. Если к Мп-параллелепипеду прибавить еще полуоктаэдр, в вершине которого находится группа OH (5) (на стыке In-октаэдров), то мы получим для Мп девятивершинник, весьма похожий на аналогичный полиэдр (около Pb²+) в сульфосолях.

Соседние параллеленинеды, соединяясь по общему ребру, образуют гофрированную цепочку, в которой выделяются двуядерные комплексы, в которых треугольные основания двух призм, ориентированные в противоположные стороны, связаны плоскостью скольжения c. Состав двуядерных комплексов может быть выражен формулой $[\mathrm{Mn_2O_{10}}]$. Аналогичные парные комплексы, но из пятивершинников — полуоктаэдров ранее отмечены для Mn и для Ti в структурах ландауита (6), $\mathrm{K_2Mn_2Zn_4Si_4O_{15}}$ (7); из

октаэдров — в нептуните (8), а из тригональных бипирамид — в структуре

 $Na_2Mn_2Si_2O_7$ (9).

Расстояния между соседними Мп внутри цепочки 3,6 Å заставляют предположить сильное взаимодействие Мп—Мп, с которым, по-видимому, связано отсутствие люминесцентных свойств у кристаллов $Na_2MnIn \cdot [SiO_3(OH)]_2(OH)$. Из сопоставления Мп- и In-полиэдров, следует, что среднее расстояние Mn-O (2,40 Å) больше расстояния In-O (2,45 Å), несмотря на более крупные размеры In^{3+} по сравнению с Mn^{2+} . Это не соответствие табличных размеров катионов и их полиэдров характерно также для шпинелей и гранатов, образующихся при высоких давлениях (10). В Na-восьмивершинниках две тригональные призмы соединены квадрат-

Таблил Локальный (11) баланс валентностей на анионах

Анионы	Катионы							
	Si	Mn	In	Na	Н-связь	Σ		
$ \begin{array}{c} O_1 \\ O_2 \\ O_3 \\ (OH)_1 \end{array} $	0,82 1,10 1,35 0,73	0,24+0,53	0,38 0,55	$\begin{bmatrix} 0.11 + 0.09 \\ 0.14 \\ 0.09 \\ 2 \cdot 0.09 \end{bmatrix}$	0,15 0,10	1,94 1,96 1,99		
(011)[0,10			+0.13 +0.17	0,1	1,11		
(OH) ₂	do il		$0,81 \\ +0,33$	70,17	0,15	0,99		

ной гранью и повернуты одна относительно другой на 90° . Эти полиэдры, соединяясь между собой, образуют стенки, перпендикулярные оси x, которые чередуются со стенками из (In-Mn)-депочек.

Расчет локального баланса валентностей (11) четко выделяет среди легких атомов группы (ОН) (табл. 3), а именно на каждые два In по две ОН в общих вершинах и по четыре ОН в наружных вершинах Si-ортотетра-

эдров.

Особенности структуры кристаллов $Na_2MnIn[SiO_3(OH)]_2(OH)$ отражают условия их образования. Синтез протекал в растворах с обычным малым содержанием кремнезема, из которых при высоком потенциале натрия (NaOH=20%) обычно образуются лишь островные орто-диортосиликаты. По отношению к двум окислам — MnO и In_2O_3 — раствор был полностью насыщен, что способствовало конденсации Mn- и In-кислородных полиэдров в соответствующие колонки. Объединению одноименных колонок в слой препятствует относительно высокий потенциал Na_2O , заставляющий оба средних катиона Mn и In выполнять функцию, близкую к анионной.

Московский государственный университет им. М. В. Ломоносова

Поступило 9 VII 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. С. Поваренных, Кристаллохимическая классификация минеральных видов, Киев, 1966. ² Ј. І t о, Ат. Міпетаl., 53, 1663 (1968). ³ Н. В. Белов, Е. Н. Белова и др., Вести. Московск. унив., Геол. сер., № 4 (1970). ⁴ Н. В. Белов, Мин. сборн. Львовск. унив., № 23 (1971). ⁵ Г. Б. Бокий, Е. М. Романова, Н. В. Максимова, В сборн. Кристаллические структуры арсенидов, сульфидов, арсеносульфидов и их аналогов, Новосибирск, 1964. ⁶ Л. Е. Николаева, Н. В. Белов, ДАН, 190, № 5 (1970). ⁷ Д. Ю. Пущаровский, Е. А. Победимская, Н. В. Белов, ДАН, 185, № 5 (1969). ⁸ С. В. Борисов, Р. Ф. Клевцова и др., Кристаллография, 10, № 6 (1965). ⁹ Л. П. Астахова, Е. А. Победимская, В. И. Симонов, ДАН, 173, № 6 (1967). ¹⁰ Б. В. Миль, Г. Роннигер, Кристаллография, 18, № 1 (1973). ¹¹ Ю. А. Пятенко, Кристаллография, 17, № 4 (1972).