УДК 518.12

MATEMATIKA

Р. А. ПОЛЯК

К УСКОРЕНИЮ СХОДИМОСТИ МЕТОДОВ ВЫПУКЛОГО ПРОГРАММИРОВАНИЯ

(Представлено академиком Л. В. Канторовичем 13 II 1973)

В настоящей работе строится общий метод для решения задачи выпуклого программирования, синтезирующей методы условной оптимизации с процессами, базирующимися на методах безусловной оптимизации. Быстрота сходимости различных конкретизаций построенного общего метода определяется скоростью, с которой сходятся соответствующие методы безусловной оптимизации.

1. Пусть $z \in E^N$, $f_i(z)$, i=0:M,— выпуклые функции, а $\Omega = \{z: f_i(z) \le 0$,

 $i=1:M\}$ — ограниченное множество. Рассмотрим задачу отыскания

$$z^* = \arg\min \{ f_0(z) \mid z \in \Omega \}. \tag{1}$$

Будем считать, что $\{i: f_i(z^*)=0\}=\{1,\ldots,m\},\ m< N$. Рассмотрим систему нелинейных уравнений $f_i(z)=0,\ i=1:m$, или в векторной форме $f(z)\equiv f(x,y)=0,\ x\in E^n,\ y\in E^m,\ m+n=N$. Пусть $\partial f_0/\partial z=f'_{0z}=(f'_{0x};\ f'_{0y})=(f'_{0x},\ldots,f'_{0xn};\ f'_{0y},\ldots,f'_{0yn});\ \partial f/\partial z=f'_z=(f'_x;\ f'_y)=(f'_{ix},\ldots,f'_{ixn};\ f'_{iy},\ldots,f'_{ixn};\ f'_{ixn},\ldots,f'_{ixn};\ f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn};\ f'_{ixn},\ldots,f'_{ixn};\ f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn};\ f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{ixn},\ldots,f'_{i$

Пусть $\rho > 0$ достаточно мало и $W(z^*, \rho) = \{z: |z_j - z_j^*| \le \rho, j = 1: N\}$.

Сформулируем некоторые условия, определяющие характер задачи (1).

A) $\det(f_y'(z^*)) \neq 0$;

В) множество Ω удовлетворяет условию Слейтера;

С) функции f(z), i=0: m, непрерывно дифференцируемы;

D) частные производные функции $f_i(z)$, i=0:m, удовлетворяют условию Липшица в прямоугольнике $W(z^*, \wp)$;

E) функции $f_i(z)$, i=0: m, дважды непрерывно дифференцируемы на

 $W(z^*, \varrho)$;

F) вторые частные производные $f_i(z)$, i=0:m, удовлетворяют на

 $W(z^*, \rho)$ условию Линшица.

Если выполнено условие A) и на $W(z^*, \rho)$ для функций $f_i(z)$, i=0:m, выполнено условие C), тогда (см., например, (¹)) существует такое $\rho'>0$, что в прямоугольнике $V(x^*, \rho') = \{x: |x_j-x_j^*| \le \rho', j=1:n\}$ система f(x, y) = 0 определяет $y_1=y_1(x),\ldots,y_m=y_m(x)$ как однозначные непрерывно дифференцируемые функции вектора x, причем $y^*=(y_1^*,\ldots,y_m^*)=(y_1(x^*),\ldots,y_m(x^*))$.

Характер функции $\varphi_0(x) = f_0(x, y(x))$, определенной на $V(x^*; \varphi')$, уста-

навливает

Теорема 1. Пусть выполнено условие А), тогда:

1) если имеют место условия B) и E), то матрица Гессе $H_0(x)$ функ-

 $\mu uu \oplus_{0}(x)$ непрерывна и $H_{0}(x^{*})$ неотрицательно определена;

2) если в дополнение к условиям п. 1 функция $f_0(z)$ строго либо сильно выпукла, то существует такое $0 < \delta \leqslant \rho'$, что в прямоугольнике $V(x^*; \delta)$ функция $\phi_0(x)$ строго либо сильно выпукла, причем минимальные собственные значения μ_1 и μ_2 матриц $f_{0zz}''(z^*)$ и $\phi_{0xx}''(x^*)$ связаны соотношением $\mu_1 \leqslant \mu_2$;

3) если на $W(z^*; \rho)$ выполнено условие D, то на $V(x^*; \rho')$ вектор $\varphi_{0x}'=$

 $=f_{0x}'+f_{0y}'\cdot y_x'=f_{0x}'-f_{0y}'(f_y')^{-1}f_x'*$ удовлетворяет условию Липшица, а при выполнении на $W(z^*;\rho)$ одного из условий E) либо F матрица Γ ессе **

$$\begin{split} H_{0}(x) = & \phi_{0xx}^{\prime\prime} = f_{0xx}^{\prime\prime} + f_{0xy}^{\prime\prime} \cdot y_{x}^{\prime} + (y_{x}^{\prime})^{T} (f_{0yx}^{\prime\prime} + f_{0yy}^{\prime\prime} y_{x}^{\prime}) + \\ & + \sum_{l} f_{0y_{l}}^{\prime\prime} y_{lxx}^{\prime\prime\prime} = \overline{H}_{0} + \sum_{l} f_{0y_{l}}^{\prime\prime} y_{lxx}^{\prime\prime\prime} \end{split}$$

соответственно непрерывна либо удовлетворяет условию Липшица на $V(x^*;\delta)$.

2. $\Pi_{\text{УСТЬ}} z^0 = (x^0; y^0 = y(x^0)) \in W(z^*; \rho), \text{ a } Q(x^0) = \{x: \varphi_0(x) \leq \varphi_0(x^0)\} \subset V(x^*; \delta).$

Решение задачи (1) можно получить, отыскав $x^* = \arg\min\{\varphi_0(x) \mid x \in Q(x^0)\}$ и $y^* = y(x^*)$.

В свою очередь, для отыскания x^* , учитывая теорему 1, достаточно использовать сходящиеся релаксационные процессы безусловной оптимизации, взяв за исходное приближение произвольный вектор $x \in O(x^0)$.

Оператор $\mathbf{R}: \Omega \to \Omega$ назовем оператором релаксации, если $f_0(\mathbf{R}z) \leq f_0(z)$. При наличии вектор-функции y(x) на основе методов безусловной оптимизации (см., например, $\binom{2-6}{1}$) подобно тому, как это сделано в $\binom{7}{1}$, могут быть построены операторы релаксации со следующими свойствами:

1°) $\|\mathbf{R}z^{h}-z^{*}\| \leq q\|z^{h}-z^{*}\|, \quad q<1;$

2°) $\|\mathbf{R}z^{k}-z^{*}\| \leq q_{k}\|z^{k}-z^{*}\|, \quad q_{k} \to 0$

3°) $\|\mathbf{R}z^k - z^*\| \leq q \|z^k - z^*\|^2$.

Наличие нелинейных ограничений делает иногда невозможным явное вадание y(x). Между тем на основе указанных операторов удается сконструировать операторы со свойствами 1°)— 3°), для реализации которых не требуется явного задания y(x).

Проиллюстрируем это на примере оператора сопряженных градиентов, построенного на основе метода (5), квадратичная сходимость которого ус-

тановлена в (⁸, ⁹).

3. Пусть выбрано достаточно малое $\delta > 0$ и такой вектор $z \in \Omega(\delta) = \{z: f_i(z) \le \delta, i = 1: M\}$, что множество $J(z; \delta) = \{i: |f_i(z)| \le \delta\} = \{1, \ldots, m\}$. Рассмотрим вектор-функцию $f(z; \delta) = f(x, y; \delta) = \{f_i(z): i \in J(z; \delta)\}$ и пусть $y = (y_1, \ldots, y_m)$.

Построим матрицу $f_z'(z; \delta) = (f_x'(z; \delta); f_y'(z; \delta))$, строками которой являются векторы $f_{iz}'(z) = (f_{iz}'(z); f_{iy}'(z)), i \in J(z; \delta)$, и предположим, что $\Delta(z; \delta) = |\det(f_y'(z; \delta))| \ge \delta$. Пусть $\tilde{z}^0 = (\tilde{x}^0, \tilde{y}^0), \tilde{y}^0 \in E^m$. Полагаем $y^0 = \tilde{y}^0 - (f_y'(\tilde{z}^0; \delta))^{-1}f(\tilde{z}^0; \delta), z^0 = (\tilde{x}^0, y^0)$.

Рассмотрим последовательность $\{z^s\}_{s=1}^n$, полученную следующим образом:

$$h^{0} = -g^{0} = -\left[f_{0x}'(z^{0}) - f_{0y}'(z^{0})\left[f_{y}'(z^{0}; \delta)\right]^{-1}f_{x}'(z^{0}; \delta)\right],$$

$$z^{s+1} = (x^{s+1}; y^{s+1}), \quad x^{s+1} = x^{s} + t_{s}h^{s}, \quad y^{s+1} = (y_{1}^{s+1}, \dots, y_{m}^{s+1}).$$

$$y_{l}^{s}(t_{s}) = y_{l}^{s+1} = y_{l}^{s} + t_{s}\frac{\partial y_{l}^{s}}{\partial x}(h^{s})^{T} + \frac{1}{2}t_{s}^{2}\frac{\partial^{2}y_{l}^{s}}{\partial x^{2}}(h^{s})^{T}, \quad l=1:m,$$

$$\partial y^{s}/\partial x = (\partial y_{l}^{s}/\partial x)^{m}_{l=1} = y_{x}'(x^{s}; \delta) = -(f_{y}'(z^{s}; \delta))^{-1}f_{x}'(z^{s}; \delta),$$

$$h^{s+1} = -g^{s+1} + \|g^{s+1}\|^{2}\|g^{s}\|^{-2}h^{s},$$

$$g^{s+1} = f_{0x}'(z^{s+1}) + f_{0y}'(z^{s+1})y_{x}'(z^{s}; \delta) + t_{s}\left(\sum f_{0y_{l}}'(z^{s+1})\frac{\partial^{2}y_{l}^{s}}{\partial x^{2}}\right)(h^{s})^{T},$$

$$t_s = \arg\min\{\varphi_{0s}(t) \mid t \ge 0\}, \quad \varphi_{0s}(t) = f_0(x^s + th^s; \ y_1^s(t), \ldots, \ y_m^s(t)).$$

** Здесь и в дальнейшем суммирование производится от 1 до т.

^{*} Для упрощения записи в формулах для ϕ'_{0x} и ϕ''_{0xx} опущено указание о том, что элементы всех входящих в соответствующие выражения матриц вычислены в точке z=(x,y(x)).

Матрицы $\partial^2 y_l^s/\partial x^2$, l=1:m, определяются из системы матричных уравнений

$$\sum f_{iy_l}^{\underline{l}}(z^s) \frac{\partial^2 y_l}{\partial x^2} = \overline{H}_i(z^s), \quad i=1:m,$$

где $\overline{H}_i(z^s)$ — матрица типа \overline{H}_0 , соответствующая функции $f_i(z)$ и вычисленная в точке z^s , причем $\Delta(z^s; \delta) \geqslant \delta$, $0 \leqslant s \leqslant n$. Оператор R сопряженных градиентов определим по формуле $\mathbf{R}\tilde{z}^0 = z^n = \tilde{z}^i$.

Если для какого-либо $\hat{0} \le s \le n$ окажется $\Delta(z^s; \delta) < \delta$, то будем говорить.

что оператор R для приближения $z=z^0$ реализовать нельзя.

Возможность реализации оператора R и характер сходимости последо-

вательности $\{\tilde{z}^k = \mathbb{R}\tilde{z}^{k-1}\}$ устанавливает

Teopema 2. Пусть выполнены условия A), B), F) и функция $f_0(z)$ сильно выпукла; тогда существует такое $\delta>0$, что для любого вектора $z\equiv W(z^*;\;\delta) \subset W(z^*;\;\rho)$ оператор R реализуем и последовательность $\{\vec{z}^k=$ $=\mathbf{R}\mathbf{\tilde{z}}^{k-1}\}_{k=1}^{\infty}$ сходится к \mathbf{z}^* квадратично, т. е. \mathbf{R} обладает свойством $\mathbf{3}^{\mathrm{o}}$).

Локальный характер сходимости методов, основанных на использовании операторов типа R, и трудности, связанные с априорным заданием параметра б, удается преодолеть с помощью приводимого ниже общего метода, синтезирующего сходящиеся процессы выпуклого программирования с методами, использующими операторы типа R.

4. На Ω определим неотрицательную функцию $\mu(z)$, удовлетворяющую

условию

$$\mu(z) \geqslant \gamma \|z - z^*\|^{\alpha}, \quad \gamma > 0, \quad \alpha > 0. \tag{2}$$

Рассмотрим оператор C: $\Omega \rightarrow \Omega$ и будем считать, что последовательность $\{z^k = \mathbb{C}z^{k-1}\}_{k=1}^{\infty}$ содержит сходящуюся к z^* подпоследовательность $\{z^{k_l}\}_{i=1}^{\infty}$, т. е. имеет место

$$\lim \mu(z^{k_l}) = 0. \tag{3}$$

При выполнении условий В) и С), согласно теореме Куна — Таккера, градиент $f_{0z}'(z^*)$ допускает разложение

$$f_{0z}'(z^*) = \sum u_i^* f_{iz}'(z^*),$$

 $f_{0z}{'}(z^*) = \sum u_i^* f_{iz}{'}(z^*)\,,$ причем для множителей Лагранжа $u^* = (u_1^*, \dots, u_m^*)$ имеет место (см., например, (10)) представление

$$u^* = [f_z'(z^*) (f_z'(z^*))^T)^{-1} f_z'(z^*) (f_{0z}'(z^*))^T \le 0.$$
(4)

Заметим, что существование $[f_z'(z^*)\,(f_z'(z^*))^T]^{-1}$ вытекает из условия A). На множестве тех δ и $z \in \Omega(\delta)$, для которых существует $[f_z'(z;\delta) \times$ $\times (f_z'(z;\delta))^T]^{-1}$, определим вектор-функцию $u(z;\delta)$, заменив в формуле (4) матрицу $f_z'(z^*)$ матрицей $f_z'(z;\delta)$, а вектор z^* – вектором z. На этом же множестве определим вектор-функцию $\varphi_{0x}'(z;\delta) = f_{0x}'(z)$ –

- $f_{0y}'(f_y'(z;\delta))^{-1}f_x'(z;\delta)$. Заметим, что при достаточно малом $\delta > 0$ в силу условий А) и С) матрицы $[f_z'(z;\delta)(f_z'(z;\delta))^T]^{-1}$ и $[f_y'(z;\delta)]^{-1}$ существуют для всех $z \in W(z^*,\delta) \subset W(z^*;\rho)$. Обозначим $\psi(z) = \max\{f_i(z) \mid i=1:M\}$, $\overline{u}(z;\delta) = \max\{u_i(z;\delta)\}$, $i \in J(z;\delta)$. Рассмотрим функцию $v = (z;\delta) = \sum_{i=1}^{n} f_i(z;\delta)$ $= \max \{ \|\varphi_{0x}'(z; \delta)\|, \overline{u}(z; \delta), \psi(z) \}.$

Y тверждение. Пусть выполнены условия A)-C), тогда

1) для того чтобы вектор z был решением задачи (1), необходимо и достаточно, чтобы

$$v(z; 0) = v(z) = 0,$$

2) если наряду с условиями A)-C) имеет место условие D, то существует L>0 такое, что

$$v(z; \delta) = v(z; \delta) - v(z^*; \delta) \le L||z - z^*|| \quad \forall (z; \delta), J(z; \delta) = \{1, \dots, m\}.$$

Монотонно убывающую последовательность $\{\delta_k\}_{k=0}^{\infty}$ назовем управляющей, если $\lim \delta_k = 0$. Будем говорить, что управляющая последовательность согласована с оператором R, если для любой сходящейся к z* последова-

тельности $\{\tilde{z}^k = R\tilde{z}^{k-1}\}_{k=1}^{\infty}$ имеет место $\lim v(z^k; \delta_k) \delta_k^{-1} = 0$.

5. Выберем операторы C, R и управляющую последовательность $\{\delta_i\}_{i=0}^{\infty}$. В качестве исходного приближения берем вектор $z^0 \in \Omega$ и полагаем i(0) = 0. Допустим, что уже проделано k шагов, найден вектор z^k и определено i(k).

Проверяем неравенство $\mu(z^k) > \delta_{i(k)}$. Если это неравенство выполнено, то полагаем $z^{k+1} = \mathbb{C} z^k$, i(k+1) = i(k) и переходим к очередному k+1 mary. Если $\mu(z^k) \leq \delta_{i(k)}$ и $\Delta(z^k; \delta_{i(k)}) \leq \delta_{i(k)}$, то полагаем $z^{k+1} = \mathbb{C} z^k$, i(k+1) =

=i(k)+1 и переходим к очередному k+1 шагу.

В случае $\mu(z^h) \leq \delta_{i(h)}$, $\Delta(z^h; \delta_{i(h)}) > \delta_{i(h)}$ полагаем $\tilde{z}^1 = z^h$, $\tilde{\delta}_h = \min\{[\mu(\tilde{z}_1)]^{\tilde{p}}, \delta_i\}$, $\beta \leq (1-\varepsilon)\alpha^{-1}$, где $1 \geq \varepsilon \geq 0$ достаточно мало. Проверяем неравенство $v(\tilde{z}^1; \tilde{\delta}_1) \leq \delta_i$. Если это неравенство выполнено, то отыскиваем $\tilde{z}^2 = R\tilde{z}^1$, иначе полагаем $z^{h+1} = Cz^h$ и переходим к очередному k+1 mary.

Пусть уже найдено \tilde{z}^i , тогда проверяем неравенство $v(\tilde{z}^i; \tilde{\delta}_l) \leq \delta$. Если это неравенство выполнено, то полагаем $\tilde{z}^{l+1} = R\tilde{z}^l$, инэче полагаем $z^{k+1} = -Cz^k$, i(k+1) = i(k) + l + 1 и переходим к очередному k+1 mary. Характер

сходимости описанного общего метода устанавливает

Теорема 3. Пусть функция $\mu(z)$ и оператор C удовлетворяют соответственно условиям (2) и (3), а управляющая последовательность $\{\delta_h\}_{=}^{k\infty}$ согласована с оператором R, тогда, начиная с некоторого момента, все приближения будут определяться лишь с помощью оператора R.

Спедствие. Если оператор R удовлетворяет одному из свойств 1^*-3^*), то последовательность приближений, порожденная описанным прочессом, сходится κ z^* соответственно линейно, сверхлинейно, квадратично.

Различные операторы C, обладающие свойством (3), и управляющие последовательности, согласованные с операторами, удовлетворяющими $(1^{\circ})-3^{\circ}$, указаны в (7). С операторами C, обладающими свойством (3), связаны обычно функции $\mu(z)$, удовлетворяющие (2).

Украинский филиал Научно-исследовательского института планирования и нормативов Киев Поступило 13 II 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. М. Фихтепгольц, Курс дифференциального и интегрального исчисления. 1. «Наука», 1969. ² Л. В. Канторович, ДАН, 56, № 3 (1947). ³ Б. Т. Поляк, Журн. вычислит. матем. и матем. физ., 3, № 14 (1963). ⁴ Ю. И. Любич, Г. Д. Майстровский, УМН, 25, в. 1 (1970). ⁵ R. Fletcher, R. Reeves, Comput. J., 7, № 2 (1964). ⁶ Н. Ниапд, J. Optim. Theory Appl., 5, № 6 (1970). ⁷ Л. А. Кириевский, Р. А. Поляк, ДАН, 209, № 3 (1973). ⁸ Г. Д. Майстровский, Вычислит. матем. и вычислит. техн., Физ.-техн. инст. низких температур АН УССР, в. II, 1971. ⁹ С. А. Смоляк, Тр. третьей зимней школы, в. III, 1970. ¹⁰ Л. В. Rо-zen, J. Soc. Industr. Appl. Math., 8, № 1 (1960).