УДК 517.945.7

MATEMATUKA

P. C. CAKC

О КРАЕВЫХ ЗАДАЧАХ ДЛЯ НЕКОТОРЫХ СИСТЕМ, ПРИВОДИМЫХ К ЭЛЛИПТИЧЕСКИМ

(Представлено академиком С. Л. Соболевым 12 II 1973)

Пусть D — ограниченная диффеоморфная шару область n-мерного эвклидова пространства с границей L класса $A^{2,\alpha}$, $0<\alpha<1$. В области D изучается система дифференциальных уравнений

 $d\omega + \lambda * \omega = \gamma \tag{1}$

относительно неизвестной дифференциальной формы ω класса $C^{2,\alpha}(\overline{D})$ при заданной форме γ из этого же класса с точки зрения возможности постановки для нее корректных краевых задач. Здесь d— оператор внешнего дифференцирования, который, как известно $(^1,^2)$, является дифференциальным оператором первого порядка первой степени, т. е. повышает степень формы на единицу, *— однозначно обратимый оператор нулевого порядка, переводящий формы степени k в формы степени n-k, постоянная $\lambda \neq 0$.

Разлагая формы ω и γ в сумму форм ω^h и γ^h степени k, легко видеть, что система (1) распадается на ряд подсистем

$$(d+\lambda*)\left(\omega^h+\omega^{n-h-1}\right)=\gamma^{h+1}+\gamma^{n-h-1}, \tag{1}_h)$$
 $k=0,1,\ldots,\left\lceil\frac{n-1}{2}\right\rceil$ и уравнение $\lambda^*\omega^n=\gamma^0.$

Системы (1) и (1_k) не являются эллиптическими, одпако их характеристические матрицы имеют постоянный ранг.

При $\lambda = 0$ очевидно, что при любых краевых условиях на ω нельзя полу-

чить корректную краевую задачу для системы (1) или (1_k) .

В работе (3) система (1) с $\lambda=1$ рассматривалась как пример системы, приводимой к эллиптической; там показано, что па римановом многообразии без края она задает нётеров оператор в соответствующих пространствах. Краевые задачи для системы (1_k) с $\lambda\neq0$ при k=1, n=3 изучались в работах автора.

Напомним, что система называется приводимой к эллиптической (3), если: 1°) ее характеристическая матрица имеет постоянный рапг, 2°) имеется оператор, аннулирующий ее старшую часть (в (1) это спова d, так как d^2 =0), и 3°) уравнение вместе со следствием, получаемым применеплем этого оператора, образует эллиптическую (хотя и переопределенную) систему. Для системы (1) таким следствием является уравиение

$$\delta \omega = \hat{\gamma}, \quad \hat{\gamma} = -\lambda^{-1} w *^{-1} d\gamma, \tag{2}$$

где $\delta \varphi = *^{-1} d^* w \varphi$, а $w \varphi^p = (-1)^p \varphi^p$ $\forall p$.

Система (1) вместе с (2) образует эллиптическую систему, так как известно, что оператор $d+\delta$ эллиптичен (2), и любое решение (1), (2) является решением системы

$$(d+\delta)\omega + \lambda * \omega = \gamma + \hat{\gamma}. \tag{3}$$

Кроме того, легко видеть, что решение системы (1) класса $C^{2, \alpha}(\overline{D})$ удов-

летворяет эллиптической системе второго порядка

$$(-\Delta - \lambda^2 w)_{\omega} = \bar{\gamma}, \quad \bar{\gamma} = d\bar{\gamma} + \delta \gamma - \lambda * w\gamma, \tag{4}$$

где $-\Delta \varphi = (d\delta - \delta d) \varphi$, $\widehat{w} \varphi^p = (-1)^{(p+1)(n-p)} \varphi^p$ Vp.

Аналогично, решение системы (1,) удовлетворяет уравнениям

$$\delta \varphi^p = \widehat{\gamma}^{p-1}, \tag{2h}$$

$$p=k, n-k-1,$$

$$(-\Delta - \lambda^2 \hat{w}) \omega^p = \tilde{\gamma}^p, \tag{4}_h$$

и, следовательно, она приводима к эллиптической.

Отметим, что любая составляющая ω^k пли ω^{n-k-1} решения системы (1_k) удовлетворяет эллиптической системе (2_k) , (4_k) , переопределенной при k>0. Краевые задачи для таких однородных систем с $\lambda=0$ изучались в работах (4,5). Наша цель — показать, что у систем (1) и (1_k) имеются различные нётеровы краевые задачи. Для этого вначале исследуем систему (1_k) .

1. Некоторые связи между составляющими реше-

ния спстемы (1_k) .

Лемма 1. Пусть, скажем, ω^k — форма класса $C^{3,\alpha}(\overline{D})$, удовлетворяющая эллиптической системе (2_h) , (4_k) , $n \neq 2k+1$; тогда $\omega^{n-k-1} = \lambda^{-1} *^{-1} \times (\gamma^{k+1} - d\omega^k)$ вместе с ω^k образуют решение системы (1_k) класса $C^{2,\alpha}(\overline{D})$.

Рассмотрим систему (1_k) при n=2k+1:

$$(d+\lambda*)\omega^{k}=\gamma^{k+1}.$$
 (5)

Предположим, что область D: а) выпукла по направлению оси x_n , б) D содержит поверхность S, не касающуюся прямых, параллельных оси x_n , ни в одной точке и заданную уравнением $x_n = s(x')$, $s(x') \in C^{2,\alpha}(\overline{\Omega})$, где Ω — проекция области D на плоскость $x_n = 0$.

Выделяя дифференциал dx_n , формы ω и γ можно представить через формы, не содержащие dx_n , в виде: $\omega^k = \varphi_1^{\ k} + \varphi_2^{\ k-1} \wedge dx_n$, $\gamma^{k+1} = \gamma_1^{\ k+1} + \gamma_2^{\ k} \wedge dx_n$. Операторы d и * также выражаются через операторы d' и *', действующие в \mathbf{R}^{n-1} , и $\partial_n = \partial/\partial x_n$: $d\omega = d'\varphi_1 + (w \ \partial_n \varphi_1 + d'\varphi_2) \wedge dx_n$, * $\omega = w *' \varphi_2 + (*'\varphi_1) \wedge dx_n$.

Поэтому уравнение (5) можно записать в виде

$$d'\varphi_1 + \lambda w *'\varphi_2 - \gamma_1 = 0, \tag{6}$$

$$\partial_n \varphi_1 + \lambda w *' \varphi_1 + w d' \varphi_2 = w \gamma_2. \tag{7}$$

Если $\omega = C^{2, \alpha}(\overline{D})$, то следствием (5) являются уравнения

$$\delta' \varphi_1 - w \, \partial_n \varphi_2 = \overline{\varphi}_1,$$

$$\delta' \varphi_2 = \overline{\varphi}_2, \quad \overline{\psi}_2 = \lambda^{-1} w *' d' \gamma_1,$$

— аналог уравнения (2_h) , а также уравнения

$$(-\Delta + \lambda^2 w) \varphi_1 = \overline{\gamma}_1,$$

$$(-\Delta - \lambda^2 w) \varphi_2 = \overline{\gamma}_2.$$
(9)

(8)

 Π емма 2. Π усть область D удовлетворяет условиям а) и б), а форма

 $\varphi_2^{h-1} \wedge dx_n y \partial o$ влетворяет в области D уравнениям (8), (9).

Тогда существует форма φ_1^k , не содержащая dx_n и такая, что $\omega^k = = \varphi_1^k + \varphi_2^{k-1} \wedge dx_n$ является решением системы (5). Форма φ_1^k определяется по φ_2^{k-1} с точностью до слагаемого вида

$$(2a)^{-1}[(a+A)e^{-ax_n}+(a-A)e^{ax_n}]\psi_0^{\ k}(x'), \tag{10}$$

где $a=\lambda w^{\prime\prime}$, $A=\lambda w*'$, а $\psi_{\scriptscriptstyle 0}{}^{^{k}}-$ произвольное решение системы

$$d'\psi(x') = 0, \quad \delta'\psi(x') = 0, \quad x' \in \Omega. \tag{11}$$

Доказательство. Пусть $\varphi_2^{k-1} \equiv C^{s,\alpha}(\overline{D})$ задана, $\widetilde{\varphi}_1^{k}$ — частное решение уравнения (7), обращающееся в нуль на S, тогда общее решение уравнения (7) имеет вид

$$\varphi_1^{h}(x) = (2a)^{-1} [(a+A)e^{-ax_n} + (a-A)e^{ax_n}] \psi^{h}(x') + \tilde{\varphi}_1^{h}(x), \tag{12}$$

где ψ^h- произвольная форма от $x'{\in}\Omega$ класса $C^{2,\;\alpha}(\bar\Omega)$, которая однозначно

определяется значениями $\varphi_1^{\ \ \ \ \ }(x)$ на S.

Обозначим через $\Theta(x)$ левую часть уравнения (6). Тогда оказывается, если φ_2 удовлетворяет уравнениям (8), (9), а φ_1 — уравнению (7), то $(\partial_n^2 - a^2)\Theta(x) = 0$ и, следовательно, Θ представима в виде $\Theta(x) = \Theta_1(x')e^{-ax_n} + \Theta_2(x')e^{ax_n}$ через Θ_1 и Θ_2 , которые однозначно определяются значениями Θ и $\partial_n\Theta$ на S. Подставляя теперь (12) в (6), получим, что уравнение (6) выполняется тогда и только тогда, когда $\psi^k(x')$ удовлетворяет эллиптической системе

$$d'\psi^{k} = \alpha(x'), \quad \delta'\psi^{k} = \beta(x'), \quad x' \in \Omega, \tag{13}$$

где α и β — вполне определенные функции ψ_2^{h-1} , причем $d'\alpha=0$, $\delta'\beta=0$.

Пусть $\bar{\psi}^h(x')$ — частное решение системы (13), а $\psi_0^h(x')$ — произвольное решение однородной системы (11), подставляя их в формулу (12), получим утверждение леммы.

Аналогичное утверждение справедливо также для системы $d\phi = \alpha$,

 $\delta \varphi = \beta$, если $d\alpha = 0$, $\delta \beta = 0$.

2. Системы (1) и (1_k) при $2k+3\neq n$, следуя работам (6 , 7), можно привести к определенным эллиптическим системам с дополнительными краевыми условиями специального вида.

 Π емма 3. Уравнение (1) на решениях класса $C^{\mathfrak{d},\,\alpha}(\overline{D})$ эквивалентно

эллиптической системе

$$-\Delta\omega + \lambda\delta * \omega = \delta\gamma + d\hat{\gamma} \tag{14}$$

с краевыми условиями вида

$$t(d\omega + \lambda * \omega - \gamma) = 0, \quad t(\delta\omega - \hat{\gamma}) = 0 \text{ na } L,$$
 (15)

 $z\partial e\ t\phi - \kappa a care$ льная компонента формы ϕ .

Система (1_h) включается в эллиптическую систему

$$(d+\delta)\varphi + \Lambda * \varphi = \gamma_h, \tag{16}$$

где
$$\varphi = \sum_{j=0}^n \varphi^j$$
, $\Lambda * \varphi = \lambda * (\varphi^k + \varphi^{n-k-1})$, $\gamma_k = \sum_{j=0}^n \overline{\gamma}^j$, причем $\overline{\gamma}^j$ при $j = k+1$, $n-k$

совпадают с правой частью (1_k) , а при j=k-1, n-k-2-c правой частью (2_k) , остальные произвольны.

Если ф удовлетворяет системе (16) и краевым условиям

$$t\varphi^{p}|_{L}=0, p=k-1, n-k-3; t*\varphi^{q}|_{L}=0, q=k+2, n-k+1,$$
 (17)

то система (16) распадается на систему (1, и систему

$$d\varphi^{p} + \delta\varphi^{p+2} = \gamma^{p+1}, \ p = 0, 1, \dots, n; \ p \neq k-2, k, \ n-k-3, n-k-1,$$

$$d\varphi^{p} = 0, \ p = k-2, \ n-k-3,$$

$$\delta\varphi^{p} = 0, \ p = k+2, \ n-k+1.$$
(18)

 Π е м м а 4. Пусть дополнительно κ (17) решение системы (18) удовлетворяет таким краевым условиям, что полученная краевая задача имеет единственное, скажем при $\gamma^{p+1}=0$, только тривиальное решение; тогда система (1_h) на решениях класса $C^{2,\alpha}(\overline{D})$ эквивалентна эллиптической системе (16) со специальной правой частью и с дополнительными краевыми условиями.

Такими краевыми условиями при $n{=}2k{+}2l{+}2,\ l{>}0,$ могут быть условия

$$t\varphi^{p}|_{L}=0, \quad p=k-2, k-4, \dots; \quad k+2l-1, \quad k+2l-3, \dots, k+1, \quad k-1, \dots, t*\varphi^{p}|_{L}=0, \quad p=k+2, k+4, \dots; \quad k+2l+3, \quad k+2l+5, \dots$$

$$(19)$$

При нечетном n систему (1_k) естественно включать в эллиптическую систему вида (16), содержащую либо только четные, либо только нечетные компоненты формы ϕ , тогда система (18) также будет содержать только такие компоненты. Она опять будет иметь только тривиальное решение, если задать при $n{=}2k{+}1$

$$t\varphi^{p}|_{L}=0$$
, $p=k-2$, $k-4$,...; $t*\varphi^{p}|_{L}=0$, $p=k+2$, $k+4$,...

а при n=2k+2l+1, $l \ge 2$, фиксируя m, $1 \le m \le l-1$, условия

$$t\varphi^p|_{L}=0$$
, $p=k+2l-2$, $k+2l-4$, ..., $k+2m$, $k-2$, $k-4$, ..., $t*\varphi^p|_{L}=0$, $p=k+2$, $k+4$, ..., $k+2m$, $k+2l+2$, $k+2l+4$, ...

3. Рассмотрим следующие краевые задачи.

Задача І. Найти в области D решение системы (1_k) , $2k+1 \neq n$, класса $C^{2-\alpha}(\overline{D})$, удовлетворяющее краевому условию

$$\beta \omega^p = \theta^p$$
 на L , $p = k$ либо $p = n - k - 1$, (20)

где заданы: β — дифференциальный оператор первого порядка нулевой степени и форма $\theta^p \in C^{2, \alpha}(L)$.

Из леммы 1 получается

Теорема 1. Задача І эквивалентна краевой задаче (20) для переопределенной эллиптической системы (2_k) , (4_k) в классе $C^{3,\alpha}(\overline{D})$.

Задача II. Найти решение системы (5) класса $C^{2,\alpha}(\overline{D})$, удовлетворяющее краевым условиям

$$\beta \varphi_2^{n-1} \wedge dx_n = \theta$$
 на L , (21)

$$\beta' \varphi_1^k = \sigma \operatorname{Ha} L' \subset L, \tag{22}$$

где β и β' — заданные дифференциальные операторы в D и на S соответственно, формы θ и σ класса $C^{2,\alpha}$ заданы на L и L', а L' — край S.

Из леммы 2 вытекает

Теорема 2. Задача II эквивалентна краевой задаче (21) для эллиптической системы (8), (9) и краевой задаче для эллиптической системы (11), полученной из (12) и (22).

Из леммы 3 получается

Теорема 3. Краевая задача для системы (1) эквивалентна на решениях класса $C^{3,\alpha}(\overline{D})$ краевой задаче для системы (14) с дополнительными краевыми условиями (15).

Аналогичное утверждение вытекает из леммы 4.

Приведенные теоремы позволяют указать для системы (1) различные нётеровы краевые задачи. Детально краевые задачи для систем (1) и (1_h) будут рассмотрены в другом сообщении.

Институт математики Сибирского отделения Академии наук СССР Новосибирск Поступило 18 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ж. ДеРам, Дифференцируемые многообразия, ИЛ, 1956. ² Л. Шварц, Комплексные многообразия, Эллиптические уравнения, М., 1964. ³ Б. Р. Вайнберг, В. А. Грушин, Матем. сборн., 72 (114), № 4 (1967). ⁴ W. V. D. Hodge, Proc. Lond. Math. Soc., ser. 2, 36 (1933). ⁵ G. Duff, D. Spencer, Ann. Math., 56, № 1 (1952). ⁶ Е. С. Зуховицкая, ДАН, 201, № 3 (1971). ⁷ И. С. Гудович, С. Г. Крейн, Матем. сборн., 84, № 4 (1971). ⁸ Р. С. Сакс, ДАН, 199, № 5 (1971). ⁹ Р. С. Сакс, Дифференциальные уравнения, 8, № 1 (1972).