УДК 517.53:517.947.42

MATEMATUKA

В. Е. БАЛАБАЕВ

КВАТЕРНИОННЫЙ АНАЛОГ СИСТЕМЫ КОШИ — РИМАНА В ЧЕТЫРЕХМЕРНОМ КОМПЛЕКСНОМ ПРОСТРАНСТВЕ И НЕКОТОРЫЕ ЕГО ПРИЛОЖЕНИЯ

(Представлено академиком М. А. Лаврентьевым 25 V 1973)

Регулярные кватернионные функции, т. е. кватернионные функции, удовлетворяющие уравнениям, аналогичным уравнениям Коши — Римана, изучались в работах ряда авторов ($^{1-6}$). Ряд работ посвящен многочисленным приложениям регулярных кватернионных функций — в физике: в квантовой механике (7), теории электромагнитного поля (8), — а также в различных областях математики: в теории аналитических функций (4), функциональном анализе (9), уравнениях с частными производными (5).

Все предыдущие исследования касались в основном случая одного кватернионного переменного, т. е. для функций в \mathbb{C}^2 , а изучение подобных функций в пространствах большей размерности оставалось вне поля зрения. В настоящей работе мы рассматриваем кватернионный аналог системы Коши — Римана в \mathbb{C}^4 и находим некоторые его приложения в комплексном анализе.

Комплексное пространство C^4 переменных z_1 , w_1 , z_2 , w_2 с введенной кватернионной структурой

$$p=z_1+w_1i$$
, $q=z_2+w_2i$

будем обозначать через $Q_{p,\,q}{}^2$. Ориентация в $Q_{p,\,q}{}^2$ выбирается так, чтобы для любой области $D{\subset}Q_{p,\,q}{}^2$

$$\int\limits_{\mathbb{R}} dz_{1} \wedge d\overline{z}_{1} \wedge dw_{1} \wedge d\overline{w}_{1} \wedge dz_{2} \wedge d\overline{z}_{2} \wedge dw_{2} \wedge d\overline{w}_{2} > 0.$$

Рассмотрим гиперкомплексные дифференциальные операторы

$$\mathcal{D}_{p}={}^{1}/{}_{2}\left(\frac{\partial}{\partial \overline{z}_{\perp}}+\frac{\partial}{\partial w_{1}}j\right),\quad \mathcal{D}_{q}'={}^{1}/{}_{2}\left(\frac{\partial}{\partial \overline{z}_{2}}+\frac{\partial}{\partial w_{2}}j\right),$$

где ј — единица алгебры кватернионов.

Однозначную кватернионную функцию f=g+hj, гладкую на открытом множестве $D \subset Q_{p,\,q}^{-2}$ назовем $(p,\,q)$ -гиперголоморфной на $D,\,$ если она в каждой точке $(p,\,q) \in D$ удовлетворяет уравнениям

$$\mathcal{D}_p f = 0$$
, $f \mathcal{D}_q' = 0$,

или в комплексной записи

$$\frac{\partial g}{\partial \overline{z}_1} = \frac{\partial \overline{h}}{\partial w_1}, \quad \frac{\partial h}{\partial \overline{z}_1} = -\frac{\partial \overline{g}}{\partial w_1}, \quad \frac{\partial g}{\partial \overline{z}_2} = \frac{\partial h}{\partial w_2}, \quad \frac{\partial g}{\partial \overline{w}_2} = -\frac{\partial h}{\partial z_2}.$$

В отличие от регулярных кватернионных функций в \mathbb{C}^2 эта система уравнений переопределена. Можно проверить, что обычные голоморфные функции переменных z_1 , w_1 , z_2 , w_2 принадлежат классу (p,q)-гиперголоморфных функций. Совокупность (p,q)-гиперголоморфных функций в области D образует пространство над полем действительных чисел, которое мы будем обозначать $H_{p,q}(D)$. Можно показать, что многие свойства голо-

морфных функций нескольких переменных справедливы и для (p,q)-гиперголоморфных функций, в частности, для них могут быть установлены теорема единственности, принцип максимума модуля, неравенства Коши, теорема Лиувилля и пругие.

1. Интегрирование (р, q)-гиперголоморфных функ-

ций. Введем в С4 две кватернионные формы

$$\omega'(p) = *dz_1 + *d\overline{w}_1 j, \quad \omega''(q) = *dz_2 + *dw_2 j,$$

где * — оператор Ходжа (10).

Предложение 1. Если функция f (p,q)-гиперголоморфна в области $G = Q_{p,q}^2$, то для любой области D = G с кусочно-гладкой границей ∂D

$$\int_{\partial D} \omega'(p) \cdot f = \int_{\partial D} f \cdot \omega''(q) = 0.$$

Предложение 2. Пусть функция f непрерывна в области $D{=}Q_{p,q}^2$ и для любого шара $B{=}{\subseteq}D$

$$\int_{\partial B} \omega'(p) \cdot f = \int_{\partial B} f \cdot \omega''(q) = 0.$$
 (1)

Tогда f (p,q)-гиперголоморфна в D.

Предложение 3. Если комплекснозначная функция f непрерывна в области $D \subset \mathbb{C}^4$ и для любого шара $B \subset \subset D$ выполнено условие (1), то

функция f голоморфна в D.

Отличие этого утверждения от обычной теоремы Мореры в том, что мы требуем равенства нулю интегралов по границам восьмимерных шаров. В обычной теореме Мореры требуется равенство нулю интегралов по границам пятимерных областей специального вида (см., например, (11), стр. 335).

Пусть $D' \subset \subset \mathbb{C}^2$, w_1 п $D'' \subset \subset \mathbb{C}^2$, w_2 — ограниченные области с кусочногладкой границей п $\Gamma = \partial D' \times \partial D''$. Рассмотрим две кватернионные формы

 $\Lambda(\zeta, p)$ if $\chi(\xi, q)$;

$$\begin{split} &\Lambda(\xi,p) = \frac{1}{4\pi^2} \frac{\left[-(\bar{\lambda}_1 - \bar{z}_1) + (\bar{\mu}_1 - \bar{w}_1)j \right]}{|\xi - p|^4} (d\lambda_1 \wedge d\mu_1 \wedge d\bar{\mu}_1 - d\lambda_1 \wedge d\bar{\lambda}_1 \wedge d\bar{\mu}_1 j), \\ &\chi(\xi,q) = \frac{1}{4\pi^2} (d\lambda_2 \wedge d\mu_2 \wedge d\bar{\mu}_2 + d\lambda_2 \wedge d\bar{\lambda}_2 \wedge d\mu_2 j) \frac{\left[-(\bar{\lambda}_2 - \bar{z}_2) + (\mu_2 - w_2)j \right]}{|\xi - q|^4}, \end{split}$$

где $\xi = \lambda_1 + \mu_1 j$, $\xi = \lambda_2 + \mu_2 j$.

Предложение 4. Пусть функция f(p,q) (p,q)-гиперголоморфна в области $D' \times D'' \subset \mathbb{C}Q_{p,q}^2$ и непрерывна в $\overline{D' \times D''}$. В этом случае для всех $(p,q) \in D' \times D''$

$$f(p,q) = \int_{\Gamma} \Lambda(\xi,p) f(\xi,\xi) \chi(\xi,q).$$

Рассмотрим теперь кватернионную форму θ_f :

$$\theta_f(\zeta, \xi; p, q) = \{ [\bar{\lambda}_1 - \bar{z}_1) - (\bar{\mu}_1 - \bar{w}_1) f] \omega'(\zeta) f(\zeta, \xi) + f(\zeta, \xi) \omega''(\xi) [(\bar{\lambda}_2 - \bar{z}_2) - (\mu_2 - w_2) f] \} [|\zeta - p|^2 + |\xi - q|^2]^{-4}.$$

Предложение 5. Пусть $D = Q_{p,q}^2 -$ ограниченная область с кусочно-гладкой границей ∂D и f-гладкая в \overline{D} кватернионная функция.

Тогда верна формула

$$\frac{3}{\pi_4} \left[\int_{\partial D} \theta_f - \int_{D} d\theta_f \right] = \begin{cases} f(p,q), & ecnu \ (p,q) \in D, \\ 0, & ecnu \ (p,q) \notin \overline{D}, \end{cases}$$
(2)

 $r\partial e \ d\theta_f$ — внешний $\partial u \phi \phi e p e h u u a \phi o p m b \theta_f$.

Когда f— (p, q)-гиперголоморфная функция в D, второй член в формуле (2) пропадает и мы получаем следующее интегральное представление (p, q)-гиперголоморфных функций:

$$\frac{3}{\pi^4} \int_{\partial D} \theta_f(\xi, \xi; p, q) = \begin{cases} f(p, q), & \text{если } (p, q) \in D, \\ 0, & \text{если } (p, q) \notin \overline{D}. \end{cases}$$
(3)

Формула (3) как частный случай включает в себя интегральное представление Мартинелли — Бохнера для голоморфных функций в C4 (11).

2. Вопросы (р, q) - гиперголоморфного продолжения. Можно показать, что для (p,q)-гиперголоморфных функций справедливы аналоги теорем Остуда - Брауна о стирании компактных особенностей и Хартогса о голоморфном продолжении (11). В частности, кватернионный аналог теоремы Хартогса позволяет получить в качестве следствия следующее утверждение о голоморфном продолжении в \mathbb{C}^4 .

Предложение 6. Пусть $D' \subset \mathbb{C}^2_{z_1, w_1}$ и $D'' \subset \mathbb{C}^2_{z_2, w_2}$ — ограниченные области с кусочно-гладкими границами $\partial D'$ и $\partial D''$ и точка $(z_1^0, w_1^0) \subseteq D'$, и пусть $U(z_1^0, w_1^0) \subset D'$ — некоторая окрестность точки (z_1^0, w_1^0) .

Tогдa любая функция $f(z_1,w_1,z_2,w_2),$ 1) голомор ϕ ная в области $U(z_1^0,w_1^0) \times D''$ и непрерывная по z_2,w_2 в $\overline{D''}$ при любых $(z_1,w_1) \in$ $\in U(z_1^0, w_1^0), 2)$ голоморфная в D' и непрерывная в $\overline{D'}$ по z_1, w_1 для любых $(z_2, w_2) \in \partial D''$. 3) непрерывная на $\partial D' \times \partial D''$, голоморфно продолжается в область $D' \times D''$.

В предложении 6 комплексные размерности областей D' и D'', равные двум, отличаются от размерностей соответствующих областей в обычной

теореме Хартогса.

При описании естественных областей определения (p,q)-гиперголоморфных функций удается установить аналог теоремы Картана — Тул-лена об одновременном продолжении (12) и таким образом получить теорему Бенке — Штейна (см. (41), стр. 370) для (p,q)-гиперголоморфных функций. Кроме того для (p, q)-гиперголоморфных функций справедлив следующий аналог принципа непрерывности Бремермана (¹³).

Предложение 7. Пусть S_{α} и T_{α} ($\alpha=1,2,\ldots$) — последовательности множеств, для которых имеет место принцип максимума модуля для функций, (p,q)-гиперголоморфных в области $D = Q_{p,q}^2$, $S_a \cap T_a = \phi$, $S_a \cup T_a = \phi$

 $\subset \subset D$, $\lim S_{\alpha} = S$ ограничено, $\lim T_{\alpha} = T \subset \subset D$.

Tогда любая функция f, (p,q)-гиперголоморфная в D, (p,q)-гиперголоморфно продолжается в некоторую окрестность S.

Автор выражает глубокую благодарность проф. Б. В. Шабату и Р. Х. Кристалинскому за внимание к работе и ценные замечания.

Смоленский государственный педагогический институт им. К. Маркса

Поступило 7 V 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ G. C. Moisil, Bull. Sci. Math., S II, 55, 468 (1931). ² R. Fueter, C. R. Congres int. Math., 1, 75 (1937). ³ A. B. Бицадзе, Изв. АН СССР, сер. матем., 17, № 6, 525 (1953). ⁴ В. С. Виноградов, ДАН, 154, № 1, 16 (1964). ⁵ В. С. Виноградов, Исследование граничных задач для эллиптических систем первого порядка. Докторская диссертация, М., 1972. ⁶ Мухаммед-Насер, Сиб. матем. журн., 12, № 6, 1327 (1971). ⁷ D. Ivanenko, K. Nikolsky, Zs. Phys., 63, 1/2, 129 (1930). ⁸ Ю. С. Маврычев, Изв. высш. учебн. завед., физика, № 11, 157 (1972). ⁹ П. Леви, Конкретные проблемы функционального анализа, М., 1967. ¹⁰ Чжень Шенниень, Комплексные многообразия, М., 1961. ¹¹ Б. В. Шабат, Введение в комплексный анализ, М., 1969. ¹² Н. Сагтап, Р. Thullen, Math. Ann., 106, 617 (1932). ¹³ Н. J. Bremerman, Trans. Am. Math. Soc., 82, 17 (1956).