УДК 547.46'054.21:678.762.3

ХИМИЯ

Ф. Р. ГРИЦЕНКО, Ю. Л. СПИРИН, В. К. ГРИЩЕНКО, Г. И. КОЧЕТОВА

СИНТЕЗ АЗО-БИС-ИЗОБУТИРОГИДРАЗИДА И ОЛИГОДИЕНОВ С КОНЦЕВЫМИ ГИДРАЗИДНЫМИ ГРУППАМИ

(Представлено академиком Г. А. Разуваевым 3 VII 1973)

Инициаторы радикальной полимеризации, имеющие функциональные группы (ОН, СООН), позволяют получать при полимеризации винильных мономеров олигомеры с реакционноспособными концевыми группами (¹). Синтез инициаторов с другими функциональными группами расширяет возможности получения новых олигомеров и полимеров на их основе.

Нами синтезирован азо-бис-изобутирогидразид (АИГ)

который инициирует радикальную полимеризацию диеновых и винильных мономеров и позволяет получать олигомеры с концевыми гидразидными группами. АИГ получали 24-часовой обработкой диметилового эфира азобис-изомасляной кислоты (²) двухкратным избытком свежеперегнанного гидразингидрата в этиловом спирте при 20° (выход 87%), т. пл. 160—162° (разложение).

Hайдено %: С 41,70; H 7,75; N 35,70 $C_8H_{18}N_6O_2$. Вычислено %: С 41,74; H 7,83; N 36,52

Содержание гидразидных групп определяли иодометрическим методом (3).

Найдено %: CONHNH2 49,70; вычислено %: CONHNH2 51,30

Наличие гидразидных групп подтверждали также спектрально по смещению полосы поглощения 1740 см⁻¹, характеризующей валентные колебания сложноэфирной группы в диметиловом эфире азо-бис-изомасляной кислоты, до 1670 см⁻¹ — полосы поглощения карбонильной группы в гидразидах и по полосам поглощения N—H-связей в области 3235 и 3340 см⁻¹ (3). АИГ хорошо растворяется в воде, спиртах, уксусной кислоте. Для константы скорости распада АИГ в метаноле, определенной по методу Тобольского (4), получено выражение

$$k_{\rm pacm} = 0.7 \cdot 10^{14} \cdot \exp \left(-30400/RT\right) \text{ cek}^{-1}$$
.

Синтезированный инициатор использовали для получения олигодиенов с концевыми гидразидными группами. Полимеризацию проводили в растворе и в эмульсии, ампулы заполняли в условиях высокого вакуума. Молекулярный вес и выход олигомера регулировали, изменяя соотношение концентраций мономера и инициатора (М, I), время и температуру процесса. Полученные данные по синтезу олигоизопрена с концевыми гидразидными группами приведены в табл. 1.

Молекулярный вес олигомеров определяли эбуллиоскопически в бензоле, содержание гидразидных групп — ацетилированием (5) и подтверждали и.-к. спектрами (рис. 1). Полученные олигомеры — бесцветные вязкие жидкости с плотностью 0.89 г/см^3 , n_D^{20} 1.5200, т. ст. -55° , хорошо рас-

творимые в углеводородах, эфирах, CCl₄, CHCl₃, пиридине.

Из олигоизопрена с концевыми гидразидными группами и диизоцианатов различной природы были получены линейные полиизопренацилсеми-карбазиды, свойства которых приведены в табл. 2. Образцы полимеров получали методом поликонденсации в растворе толуола при $0-5^{\circ}$ при эквимолекулярном соотношении изоцианатных групп к гидразидным. Вязкость

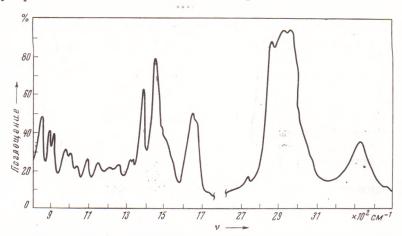


Рис. 1. И.-к. спектр олигоизопрена с концевыми гидразидными группами

полимеров измеряли в 1% растворах в циклогексаноне при 25°. Температуру стеклования полимеров определяли методом дифференциального термического анализа (°).

Таблица 1

Олигомеризация изопрена

[М _o], мол/л	[I] ₀ , мол/л	Среда	T-pa, °C	Время, час	Выход, %	Мол. вес	CONHNH ₂ ,
3,55	0,059	Метанол	85	22	29	2500	3,70
3,50	0,116	»	90	13	38	1700	5,10
3,22 *	0,064	»	85	20	24	2400	3,85
5,00	0,115	Вода, 1% эмульгатор	85	17	34	2500	3,66

^{*} Синтез проводили в автоклаве.

Таблица 2

Свойства полиизопренацилсемикарбазидов

Мол. вес олигомера	Изоцианат	η, дл/г	Прочность на раз- рыв, кг/см²	Отн. удл. при раз- рыве, %	Т. ст.,		
1700 1700 1700	Гексаметилендиизоцианат 2,4-Толуилендиизоцианат 4,4'-Дифенилметандиизо-	0,42 0,34 0,57	17 80 135	1700 600 1100	-50 -51 -52		
1550 *	цианат 2,4-Толу и лендиизоцианат	1,10 **	9	1800	55		

^{*} Олигоизопрендиол.

^{**} В бензоле.

Для сравнения в табл. 2 приведены свойства полиуретана на олигоизопрендиоле, полученном олигомеризацией изопрена, инициированной азобис-цианпентанолом. Как видно из данных табл. 2, замена в полимере уретановых групп на более полярные — семикарбазидные приводит к значительному повышению прочности без существенного изменения температуры стеклования.

Институт химии высокомолекулярных соединений Академии наук УССР Поступило 11 VI 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. Л. Спирин, В. К. Грищенко, А. А. Берлин, Авт. свид. СССР 193715, Бюлж. изобрет., № 7 (1967). G. S. Misra, R. C. Rastogi, V. P. Gupta, Makromol. Chem., 50, 72 (1961). ² Beilsteins Handbuch, 4, Berlin, 1922, p. 563. ³ А. П. Греков, Органическая химия гидразина, Киев, 1966, стр. 50, 179, 197. ⁴ А. Товоlsky, J. Ам. Chem. Soc., 80, 5927 (1958). ⁵ Губен-Вейль, Методы органической химии, методы анализа, М., 1963, стр. 674. ⁵ Ю. Ю. Керча, Ю. С. Липатов, Н. К. Ивченко, Высокомолек. соед., А9, 798 (1967).